These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30121257)

  • 21. 3-D imaging and analysis of neurons infected in vivo with Toxoplasma gondii.
    Koshy AA; Cabral CM
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25549001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of oxidative stress in the pathophysiology of Toxoplasma gondii infection.
    Dincel GC; Atmaca HT
    Int J Immunopathol Pharmacol; 2016 Jun; 29(2):226-40. PubMed ID: 26966143
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Primary brain cell infection by
    Mouveaux T; Roger E; Gueye A; Eysert F; Huot L; Grenier-Boley B; Lambert JC; Gissot M
    Open Biol; 2021 Oct; 11(10):210053. PubMed ID: 34610266
    [No Abstract]   [Full Text] [Related]  

  • 24. Advances and Challenges in Understanding Cerebral Toxoplasmosis.
    Schlüter D; Barragan A
    Front Immunol; 2019; 10():242. PubMed ID: 30873157
    [No Abstract]   [Full Text] [Related]  

  • 25. Toxoplasma gondii Infections Alter GABAergic Synapses and Signaling in the Central Nervous System.
    Brooks JM; Carrillo GL; Su J; Lindsay DS; Fox MA; Blader IJ
    mBio; 2015 Oct; 6(6):e01428-15. PubMed ID: 26507232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrin-dependent migratory switches regulate the translocation of Toxoplasma-infected dendritic cells across brain endothelial monolayers.
    Ross EC; Ten Hoeve AL; Barragan A
    Cell Mol Life Sci; 2021 Jun; 78(12):5197-5212. PubMed ID: 34023934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolomic signature of mouse cerebral cortex following Toxoplasma gondii infection.
    Ma J; He JJ; Hou JL; Zhou CX; Zhang FK; Elsheikha HM; Zhu XQ
    Parasit Vectors; 2019 Jul; 12(1):373. PubMed ID: 31358041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased expressions of ADAMTS-13 and apoptosis contribute to neuropathology during Toxoplasma gondii encephalitis in mice.
    Dincel GC; Atmaca HT
    Neuropathology; 2016 Jun; 36(3):211-26. PubMed ID: 26542631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disruption of Purinergic Receptor P2X7 Signaling Increases Susceptibility to Cerebral Toxoplasmosis.
    Moreira-Souza ACA; Rangel TP; Silva SRBD; Figliuolo VR; Savio LEB; Schmitz F; Takiya CM; Wyse ATS; Vommaro RC; Coutinho-Silva R
    Am J Pathol; 2019 Apr; 189(4):730-738. PubMed ID: 30653952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Toxoplasma gondii: a potential role in the genesis of psychiatric disorders].
    Fond G; Capdevielle D; Macgregor A; Attal J; Larue A; Brittner M; Ducasse D; Boulenger JP
    Encephale; 2013 Feb; 39(1):38-43. PubMed ID: 23095600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Apoptosis and S phase of the cell cycle in BeWo trophoblastic and HeLa cells are differentially modulated by Toxoplasma gondii strain types.
    Angeloni MB; Silva NM; Castro AS; Gomes AO; Silva DA; Mineo JR; Ferro EA
    Placenta; 2009 Sep; 30(9):785-91. PubMed ID: 19643475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation.
    Lüder CG; Giraldo-Velásquez M; Sendtner M; Gross U
    Exp Parasitol; 1999 Sep; 93(1):23-32. PubMed ID: 10464035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robust Control of a Brain-Persisting Parasite through MHC I Presentation by Infected Neurons.
    Salvioni A; Belloy M; Lebourg A; Bassot E; Cantaloube-Ferrieu V; Vasseur V; Blanié S; Liblau RS; Suberbielle E; Robey EA; Blanchard N
    Cell Rep; 2019 Jun; 27(11):3254-3268.e8. PubMed ID: 31189109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toxoplasma gondii: determination of the onset of chronic infection in mice and the in vitro reactivation of brain cysts.
    Chew WK; Wah MJ; Ambu S; Segarra I
    Exp Parasitol; 2012 Jan; 130(1):22-5. PubMed ID: 22027550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of human class I transgenes on Toxoplasma gondii cyst formation.
    Brown CR; David CS; Khare SJ; McLeod R
    J Immunol; 1994 May; 152(9):4537-41. PubMed ID: 8157968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Persistence of Toxoplasma gondii in the central nervous system: a fine-tuned balance between the parasite, the brain and the immune system.
    Blanchard N; Dunay IR; Schlüter D
    Parasite Immunol; 2015 Mar; 37(3):150-8. PubMed ID: 25573476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of microglial cell responses in murine Toxoplasma encephalitis by CD200/CD200 receptor interaction.
    Deckert M; Sedgwick JD; Fischer E; Schlüter D
    Acta Neuropathol; 2006 Jun; 111(6):548-58. PubMed ID: 16718351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanism of interferon-gamma induced anti Toxoplasma gondii by indoleamine 2,3-dioxygenase and/or inducible nitric oxide synthase vary among tissues.
    Fujigaki S; Takemura M; Hamakawa H; Seishima M; Saito K
    Adv Exp Med Biol; 2003; 527():97-103. PubMed ID: 15206721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of a Key Antigen for Immunological Intervention To Target the Latent Stage of
    Sa Q; Ochiai E; Tiwari A; Mullins J; Shastri N; Mercier C; Cesbron-Delauw MF; Suzuki Y
    J Immunol; 2017 Jun; 198(11):4425-4434. PubMed ID: 28446567
    [No Abstract]   [Full Text] [Related]  

  • 40. Avirulence and lysozyme secretion in Paneth cells after infection of BALB/c mice with oocysts of Toxoplasma gondii strains TgCatCHn2 (ToxoDB#17) and TgCatCHn4 (ToxoDB#9).
    Lu YY; Dong H; Feng YJ; Wang K; Jiang YB; Zhang LX; Yang YR
    Vet Parasitol; 2018 Mar; 252():1-8. PubMed ID: 29559128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.