These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30121316)

  • 21. Quantitation of protein particles in parenteral solutions using micro-flow imaging.
    Huang CT; Sharma D; Oma P; Krishnamurthy R
    J Pharm Sci; 2009 Sep; 98(9):3058-71. PubMed ID: 18937372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative Evaluation of Two Methods for Preparative Fractionation of Proteinaceous Subvisible Particles--Differential Centrifugation and FACS.
    Boll B; Folzer E; Finkler C; Huwyler J; Mahler HC; Schmidt R; Koulov AV
    Pharm Res; 2015 Dec; 32(12):3952-64. PubMed ID: 26195006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light obscuration measurements of highly viscous solutions: sample pressurization overcomes underestimation of subvisible particle counts.
    Weinbuch D; Jiskoot W; Hawe A
    AAPS J; 2014 Sep; 16(5):1128-31. PubMed ID: 24934297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Strengths of Total Holographic Video Microscopy in Detecting Sub-Visible Protein Particles in Biopharmaceuticals: A Comparison to Flow Imaging and Resonant Mass Measurement.
    Rahn H; Oeztuerk M; Hentze N; Junge F; Hollmann M
    J Pharm Sci; 2023 Apr; 112(4):985-990. PubMed ID: 36596393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factors Governing the Accuracy of Subvisible Particle Counting Methods.
    Ríos Quiroz A; Finkler C; Huwyler J; Mahler HC; Schmidt R; Koulov AV
    J Pharm Sci; 2016 Jul; 105(7):2042-52. PubMed ID: 27287519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of subvisible particles in human immunoglobulin and lipid nanoparticles repackaged from a multi-dose vial using plastic syringes.
    Hada S; Na KJ; Jeong J; Choi DH; Kim NA; Jeong SH
    Int J Biol Macromol; 2023 Mar; 232():123439. PubMed ID: 36716845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical evaluation and guidance for using the Coulter method for counting subvisible particles in protein solutions.
    Barnard JG; Rhyner MN; Carpenter JF
    J Pharm Sci; 2012 Jan; 101(1):140-53. PubMed ID: 22109687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid Quantification of Protein Particles in High-Concentration Antibody Formulations.
    Wu H; Randolph TW
    J Pharm Sci; 2019 Mar; 108(3):1110-1116. PubMed ID: 30773198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A critical review of analytical methods for subvisible and visible particles.
    Narhi LO; Jiang Y; Cao S; Benedek K; Shnek D
    Curr Pharm Biotechnol; 2009 Jun; 10(4):373-81. PubMed ID: 19519412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative laser diffraction method for the assessment of protein subvisible particles.
    Totoki S; Yamamoto G; Tsumoto K; Uchiyama S; Fukui K
    J Pharm Sci; 2015 Feb; 104(2):618-26. PubMed ID: 25449441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.
    Gikanga B; Eisner DR; Ovadia R; Day ES; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2017; 71(3):172-188. PubMed ID: 27789805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Micro-Flow Imaging: Estimation of the Contribution of Key Factors to the Variability of Subvisible Particle Count Measurement by a Nested Statistical Analysis.
    Zhang K; Wrzosek T; Desai KG; Monck M
    PDA J Pharm Sci Technol; 2020; 74(1):15-26. PubMed ID: 31519785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unmasking translucent protein particles by improved micro-flow imaging™ algorithms.
    Pedersen JS; Persson M
    J Pharm Sci; 2014 Jan; 103(1):107-14. PubMed ID: 24281987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of subvisible particulates in lyophilised Erwinia chrysanthemi L-asparaginase and relationship with clinical experience.
    Gervais D; Corn T; Downer A; Smith S; Jennings A
    AAPS J; 2014 Jul; 16(4):784-90. PubMed ID: 24854894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced Subvisible Particle Formation in Lyophilized Intravenous Immunoglobulin Formulations Containing Polysorbate 20.
    Zhou C; Qi W; Lewis EN; Randolph TW; Carpenter JF
    J Pharm Sci; 2016 Aug; 105(8):2302-9. PubMed ID: 27290624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shape Characterization of Subvisible Particles Using Dynamic Imaging Analysis.
    Mathaes R; Manning MC; Winter G; Engert J; Wilson GA
    J Pharm Sci; 2020 Jan; 109(1):375-379. PubMed ID: 31476311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subvisible Particles in IVIg Formulations Activate Complement in Human Serum.
    Chisholm CF; Behnke W; Pokhilchuk Y; Frazer-Abel AA; Randolph TW
    J Pharm Sci; 2020 Jan; 109(1):558-565. PubMed ID: 31672401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Achievements and Current Interests in Research on the Characterization and Quality Control of Biopharmaceuticals in Japan.
    Ishii-Watabe A; Shibata H; Suetomo H; Ikeda Y; Telikepalli S; Kiyoshi M; Hayashi Y; Muto T; Tanaka Y; Ueda S; Iwura T; Saitoh S; Aoyama M; Harazono A; Hyuga M; Goda Y; Torisu T; Uchiyama S
    J Pharm Sci; 2020 May; 109(5):1652-1661. PubMed ID: 31927040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correcting the Relative Bias of Light Obscuration and Flow Imaging Particle Counters.
    Ripple DC; Hu Z
    Pharm Res; 2016 Mar; 33(3):653-72. PubMed ID: 26555667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Convolutional Neural Networks Enable Highly Accurate and Automated Subvisible Particulate Classification of Biopharmaceuticals.
    Wang S; Liaw A; Chen YM; Su Y; Skomski D
    Pharm Res; 2023 Jun; 40(6):1447-1457. PubMed ID: 36471026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.