These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 30121365)
1. Virtual Reality for Neurorehabilitation: Insights From 3 European Clinics. O'Neil O; Fernandez MM; Herzog J; Beorchia M; Gower V; Gramatica F; Starrost K; Kiwull L PM R; 2018 Sep; 10(9 Suppl 2):S198-S206. PubMed ID: 30121365 [TBL] [Abstract][Full Text] [Related]
2. Effectiveness of conventional versus virtual reality-based balance exercises in vestibular rehabilitation for unilateral peripheral vestibular loss: results of a randomized controlled trial. Meldrum D; Herdman S; Vance R; Murray D; Malone K; Duffy D; Glennon A; McConn-Walsh R Arch Phys Med Rehabil; 2015 Jul; 96(7):1319-1328.e1. PubMed ID: 25842051 [TBL] [Abstract][Full Text] [Related]
3. Restoring movement representation and alleviating phantom limb pain through short-term neurorehabilitation with a virtual reality system. Osumi M; Ichinose A; Sumitani M; Wake N; Sano Y; Yozu A; Kumagaya S; Kuniyoshi Y; Morioka S Eur J Pain; 2017 Jan; 21(1):140-147. PubMed ID: 27378656 [TBL] [Abstract][Full Text] [Related]
4. The development and pilot evaluation of virtual reality balance scenarios in people with multiple sclerosis (MS): A feasibility study. Khalil H; Al-Sharman A; El-Salem K; Alghwiri AA; Al-Shorafat D; Khazaaleh S; Abu Foul L NeuroRehabilitation; 2018; 43(4):473-482. PubMed ID: 30400117 [TBL] [Abstract][Full Text] [Related]
5. The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: a randomized preliminary study. Prasertsakul T; Kaimuk P; Chinjenpradit W; Limroongreungrat W; Charoensuk W Biomed Eng Online; 2018 Sep; 17(1):124. PubMed ID: 30227884 [TBL] [Abstract][Full Text] [Related]
6. Beyond therapists: Technology-aided physical MS rehabilitation delivery. Feys P; Straudi S Mult Scler; 2019 Sep; 25(10):1387-1393. PubMed ID: 31469352 [TBL] [Abstract][Full Text] [Related]
7. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders. Hakim RM; Tunis BG; Ross MD Disabil Rehabil Assist Technol; 2017 Nov; 12(8):765-771. PubMed ID: 28035841 [TBL] [Abstract][Full Text] [Related]
8. A learning-based agent for home neurorehabilitation. Lydakis A; Meng Y; Munroe C; Wu YN; Begum M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1233-1238. PubMed ID: 28813990 [TBL] [Abstract][Full Text] [Related]
9. The future of telerehabilitation: embracing virtual reality and augmented reality innovations. Naqvi WM; Naqvi IW; Mishra GV; Vardhan VD Pan Afr Med J; 2024; 47():157. PubMed ID: 38974699 [TBL] [Abstract][Full Text] [Related]
10. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Lloréns R; Noé E; Colomer C; Alcañiz M Arch Phys Med Rehabil; 2015 Mar; 96(3):418-425.e2. PubMed ID: 25448245 [TBL] [Abstract][Full Text] [Related]
11. Study on the Effectiveness of Virtual Reality Game-Based Training on Balance and Functional Performance in Individuals with Paraplegia. Khurana M; Walia S; Noohu MM Top Spinal Cord Inj Rehabil; 2017; 23(3):263-270. PubMed ID: 29339902 [No Abstract] [Full Text] [Related]
12. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Tieri G; Morone G; Paolucci S; Iosa M Expert Rev Med Devices; 2018 Feb; 15(2):107-117. PubMed ID: 29313388 [TBL] [Abstract][Full Text] [Related]
13. Flexible Virtual Reality System for Neurorehabilitation and Quality of Life Improvement. Stanica IC; Moldoveanu F; Portelli GP; Dascalu MI; Moldoveanu A; Ristea MG Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114272 [TBL] [Abstract][Full Text] [Related]
14. [Virtual reality technology as a promising direction in neurorehabilitation]. Bofanova NS; Tychkov AY; Khanfar YA; Zolotarev RV Zh Nevrol Psikhiatr Im S S Korsakova; 2023; 123(1):131-136. PubMed ID: 36719129 [TBL] [Abstract][Full Text] [Related]
15. [Low-cost virtual reality. A new application for upper extremity motor rehabilitation in neurological pathology: Pilot study]. de Los Reyes-Guzmán A; Fernández García L; Alvarez-Rodríguez M; Lozano-Berrio V; Domingo-García AM; Ceruelo-Abajo S Rehabilitacion (Madr); 2022; 56(3):173-181. PubMed ID: 34511255 [TBL] [Abstract][Full Text] [Related]
16. The efficacy of virtual reality tools for total knee replacement rehabilitation: A systematic review. Blasco J; Igual-Camacho C; Blasco M; Antón-Antón V; Ortiz-Llueca L; Roig-Casasús S Physiother Theory Pract; 2021 Jun; 37(6):682-692. PubMed ID: 31313607 [No Abstract] [Full Text] [Related]
17. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study. Perez-Marcos D; Chevalley O; Schmidlin T; Garipelli G; Serino A; Vuadens P; Tadi T; Blanke O; Millán JDR J Neuroeng Rehabil; 2017 Nov; 14(1):119. PubMed ID: 29149855 [TBL] [Abstract][Full Text] [Related]
18. Does the addition of virtual reality training to a standard program of inpatient rehabilitation improve sitting balance ability and function after stroke? Protocol for a single-blind randomized controlled trial. Sheehy L; Taillon-Hobson A; Sveistrup H; Bilodeau M; Fergusson D; Levac D; Finestone H BMC Neurol; 2016 Mar; 16():42. PubMed ID: 27036515 [TBL] [Abstract][Full Text] [Related]
19. Video and computer-based interactive exercises are safe and improve task-specific balance in geriatric and neurological rehabilitation: a randomised trial. van den Berg M; Sherrington C; Killington M; Smith S; Bongers B; Hassett L; Crotty M J Physiother; 2016 Jan; 62(1):20-8. PubMed ID: 26701163 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional, virtual reality vestibular rehabilitation for chronic imbalance problem caused by Ménière's disease: a pilot study. Hsu SY; Fang TY; Yeh SC; Su MC; Wang PC; Wang VY Disabil Rehabil; 2017 Aug; 39(16):1601-1606. PubMed ID: 27418422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]