These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 30121465)
1. Index for nitrate dosage calculation on sediment odor control using nitrate-dependent ferrous and sulfide oxidation interactions. He Z; Huang R; Liang Y; Yu G; Chong Y; Wang L J Environ Manage; 2018 Nov; 226():289-297. PubMed ID: 30121465 [TBL] [Abstract][Full Text] [Related]
2. Temperature response of sulfide/ferrous oxidation and microbial community in anoxic sediments treated with calcium nitrate addition. He Z; Long X; Li L; Yu G; Chong Y; Xing W; Zhu Z J Environ Manage; 2017 Apr; 191():209-218. PubMed ID: 28104553 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of ammonium sharp increase during sediments odor control by calcium nitrate addition and an alternative control approach by subsurface injection. Lai J; Cheng M; Huang R; Yu G; Chong Y; Li Y; Zhong Y Environ Res; 2020 Nov; 190():109979. PubMed ID: 32745537 [TBL] [Abstract][Full Text] [Related]
4. Piped-slow-release calcium nitrate dosing: A new approach to in-situ sediment odor control in rural areas. Zhang Y; Liang Z; Li P; Lai J; Kang P; Huang R; Liang Y; Yu G Sci Total Environ; 2024 May; 926():171993. PubMed ID: 38547967 [TBL] [Abstract][Full Text] [Related]
5. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments. Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195 [TBL] [Abstract][Full Text] [Related]
6. Coupling oxidation of acid volatile sulfide, ferrous iron, and ammonia nitrogen from black-odorous sediment via autotrophic denitrification-anammox by nitrate addition. Mai Y; Liang Y; Cheng M; He Z; Yu G Sci Total Environ; 2021 Oct; 790():147972. PubMed ID: 34082326 [TBL] [Abstract][Full Text] [Related]
7. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment. Laufer K; Røy H; Jørgensen BB; Kappler A Appl Environ Microbiol; 2016 Oct; 82(20):6120-6131. PubMed ID: 27496777 [TBL] [Abstract][Full Text] [Related]
8. Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage. Liang S; Zhang L; Jiang F Water Res; 2016 Sep; 100():421-428. PubMed ID: 27232986 [TBL] [Abstract][Full Text] [Related]
9. Risk control and assessment of sulfide-rich sediment remediation by controlled-release calcium nitrate. Yang X; Zhong M; Pu J; Liu C; Luo H; Xu M Water Res; 2022 Nov; 226():119230. PubMed ID: 36270148 [TBL] [Abstract][Full Text] [Related]
10. Phosphorus immobilization in sulfide-ferrous oxidation process driven by nitrate reduction during black-odorous sediment remediation. Zhang S; Wang A; Li L; Liang Z; Huang K; Ye Q; Deng G; Yang Y; Li P; Yu G; Liang Y Bioresour Technol; 2024 Sep; 407():131130. PubMed ID: 39032533 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content. Laufer K; Byrne JM; Glombitza C; Schmidt C; Jørgensen BB; Kappler A Environ Microbiol; 2016 Sep; 18(9):3159-74. PubMed ID: 27234371 [TBL] [Abstract][Full Text] [Related]
12. Elevated nitrate simplifies microbial community compositions and interactions in sulfide-rich river sediments. Li E; Deng T; Yan L; Zhou J; He Z; Deng Y; Xu M Sci Total Environ; 2021 Jan; 750():141513. PubMed ID: 32853935 [TBL] [Abstract][Full Text] [Related]
14. Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. Muehe EM; Gerhardt S; Schink B; Kappler A FEMS Microbiol Ecol; 2009 Dec; 70(3):335-43. PubMed ID: 19732145 [TBL] [Abstract][Full Text] [Related]
15. The effect of nitrate concentration on sulfide-driven autotrophic denitrification in marine sediment. Shao MF; Zhang T; Fang HH; Li X Chemosphere; 2011 Mar; 83(1):1-6. PubMed ID: 21316076 [TBL] [Abstract][Full Text] [Related]
16. Evidence for the occurrence of Feammox coupled with nitrate-dependent Fe(II) oxidation in natural enrichment cultures. Wang W; Ding B; Hu Y; Zhang H; He Y; She Y; Li Z Chemosphere; 2022 Sep; 303(Pt 1):134903. PubMed ID: 35551943 [TBL] [Abstract][Full Text] [Related]
17. Effects of Fe(II) and organic carbon on nitrate reduction in surficial sediments of a large shallow freshwater lake. Li N; Li Y; Lou R; Xu H; Saeed L J Environ Manage; 2023 Jun; 336():117623. PubMed ID: 36893539 [TBL] [Abstract][Full Text] [Related]
18. Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS. Tominski C; Heyer H; Lösekann-Behrens T; Behrens S; Kappler A Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500257 [TBL] [Abstract][Full Text] [Related]
19. Microbial community structure and function in response to the shift of sulfide/nitrate loading ratio during the denitrifying sulfide removal process. Huang C; Li ZL; Chen F; Liu Q; Zhao YK; Zhou JZ; Wang AJ Bioresour Technol; 2015 Dec; 197():227-34. PubMed ID: 26340031 [TBL] [Abstract][Full Text] [Related]
20. Long-term sulfide input enhances chemoautotrophic denitrification rather than DNRA in freshwater lake sediments. Pang Y; Wang J; Li S; Ji G Environ Pollut; 2021 Feb; 270():116201. PubMed ID: 33321438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]