These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30121496)

  • 1. Computational fluid dynamics of impinging microjet for a needle-free skin scar treatment system.
    Mohizin A; Roy KER; Lee D; Lee SK; Kim JK
    Comput Biol Med; 2018 Oct; 101():61-69. PubMed ID: 30121496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of geometrical parameters on the fluid dynamics of air-powered needle-free jet injectors.
    Mohizin A; Kim JK
    Comput Biol Med; 2020 Mar; 118():103642. PubMed ID: 32174321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating skin penetration depth and shape following needle-free injection at different pressures: A cadaveric study.
    Seok J; Oh CT; Kwon HJ; Kwon TR; Choi EJ; Choi SY; Mun SK; Han SH; Kim BJ; Kim MN
    Lasers Surg Med; 2016 Aug; 48(6):624-8. PubMed ID: 27075398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin pre-ablation and laser assisted microjet injection for deep tissue penetration.
    Jang HJ; Yeo S; Yoh JJ
    Lasers Surg Med; 2017 Apr; 49(4):387-394. PubMed ID: 27778355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-induced microjet injection into preablated skin for more effective transdermal drug delivery.
    Jang HJ; Hur E; Kim Y; Lee SH; Kang NG; Yoh JJ
    J Biomed Opt; 2014 Nov; 19(11):118002. PubMed ID: 25408959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental analysis of the performance of an air-powered needle-free liquid jet injector.
    Portaro R; Ng HD
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3499-502. PubMed ID: 24110483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug injection and dispersion characteristics of an air-powered needle-free injector.
    Zhu Y; Kang C; Cai W; Huang C
    Med Eng Phys; 2022 Nov; 109():103906. PubMed ID: 36371083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penetration and delivery characteristics of repetitive microjet injection into the skin.
    Römgens AM; Rem-Bronneberg D; Kassies R; Hijlkema M; Bader DL; Oomens CW; van Bruggen MP
    J Control Release; 2016 Jul; 234():98-103. PubMed ID: 27178812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Needleless laser injector versus needle injection for skin enhancement and rejuvenation effect of dermal filler.
    Han HS; Kim BR; Kim M; Na JI; Seo SB; Huh CH; Shin JW
    Lasers Surg Med; 2023 Nov; 55(9):809-816. PubMed ID: 37632290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards clinical use of a laser-induced microjet system aimed at reliable and safe drug delivery.
    Jang HJ; Yu H; Lee S; Hur E; Kim Y; Lee SH; Kang N; Yoh JJ
    J Biomed Opt; 2014 May; 19(5):058001. PubMed ID: 24849388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel needle-free microjet drug injector using Er:YAG LASER: A completely new concept of transdermal drug delivery system.
    Lee JJ; Yi KH; Kim HS; An MH; Seo KK; Chang-Hun H; Kim HJ
    Clin Anat; 2022 Jul; 35(5):682-685. PubMed ID: 35445437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A liquid breakdown driven non-invasive microjet injection system.
    Ham H; Yoh JJ
    Med Eng Phys; 2021 Jun; 92():54-63. PubMed ID: 34167712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic mechanical interaction between injection liquid and human tissue simulant induced by needle-free injection of a highly focused microjet.
    Miyazaki Y; Usawa M; Kawai S; Yee J; Muto M; Tagawa Y
    Sci Rep; 2021 Jul; 11(1):14544. PubMed ID: 34267280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The penetration of a soft solid by a liquid jet, with application to the administration of a needle-free injection.
    Shergold OA; Fleck NA; King TS
    J Biomech; 2006; 39(14):2593-602. PubMed ID: 16277987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment.
    Li J; Huang G; Ye M; Li M; Liu R; Mei Y
    Nanoscale; 2011 Dec; 3(12):5083-9. PubMed ID: 22057905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power.
    Schramm-Baxter J; Mitragotri S
    J Control Release; 2004 Jul; 97(3):527-35. PubMed ID: 15212884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piezoelectric control of needle-free transdermal drug delivery.
    Stachowiak JC; von Muhlen MG; Li TH; Jalilian L; Parekh SH; Fletcher DA
    J Control Release; 2007 Dec; 124(1-2):88-97. PubMed ID: 17884231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Mathematical Model and Experimental Verification of Optimal Nozzle Diameter in Needle-Free Injection.
    Zeng D; Kang Y; Xie L; Xia X; Wang Z; Liu W
    J Pharm Sci; 2018 Apr; 107(4):1086-1094. PubMed ID: 29233727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient modelling of impact driven needle-free injectors.
    Rane YS; Marston JO
    Comput Biol Med; 2021 Aug; 135():104586. PubMed ID: 34242869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Needle-free transdermal delivery using PLGA nanoparticles: effect of particle size, injection pressure and syringe orifice diameter.
    Park CH; Tijing LD; Kim CS; Lee KM
    Colloids Surf B Biointerfaces; 2014 Nov; 123():710-5. PubMed ID: 25456991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.