BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30121512)

  • 1. Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.).
    Chen J; Dou R; Yang Z; You T; Gao X; Wang L
    Plant Physiol Biochem; 2018 Sep; 130():604-612. PubMed ID: 30121512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc Oxide Nanoparticles Alleviate Chilling Stress in Rice (
    Song Y; Jiang M; Zhang H; Li R
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings.
    Chen J; Liu X; Wang C; Yin SS; Li XL; Hu WJ; Simon M; Shen ZJ; Xiao Q; Chu CC; Peng XX; Zheng HL
    J Hazard Mater; 2015 Oct; 297():173-82. PubMed ID: 25958266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Copper Oxide Nanoparticles on the Growth of Rice (
    Yang Z; Xiao Y; Jiao T; Zhang Y; Chen J; Gao Y
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32075321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of rice genotypes with differential nitrate reductase-dependent NO synthesis to melatonin under ZnO nanoparticles' (NPs) stress.
    Huang Z; Xie W; Wang M; Liu X; Ashraf U; Qin D; Zhuang M; Li W; Li Y; Wang S; Tian H; Mo Z
    Chemosphere; 2020 Jul; 250():126337. PubMed ID: 32135442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system.
    Faizan M; Bhat JA; Hessini K; Yu F; Ahmad P
    Ecotoxicol Environ Saf; 2021 Sep; 220():112401. PubMed ID: 34118747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiomics analysis reveals a substantial decrease in nanoplastics uptake and associated impacts by nano zinc oxide in fragrant rice (Oryza sativa L.).
    Imran M; Junaid M; Shafiq S; Liu S; Chen X; Wang J; Tang X
    J Hazard Mater; 2024 Aug; 474():134640. PubMed ID: 38810581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake.
    Wu F; Fang Q; Yan S; Pan L; Tang X; Ye W
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26974-26981. PubMed ID: 32385821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of zero-valent iron nanoparticles and quinclorac coexposure on the growth and antioxidant system of rice (Oryza sativa L.).
    Zhang R; Bai X; Shao J; Chen A; Wu H; Luo S
    Ecotoxicol Environ Saf; 2020 Oct; 203():111054. PubMed ID: 32888616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of particle size on toxicity, bioaccumulation, and translocation of zinc oxide nanoparticles to bok choy (Brassica chinensis L.) in garden soil.
    Kim SH; Bae S; Sung YW; Hwang YS
    Ecotoxicol Environ Saf; 2024 Jul; 280():116519. PubMed ID: 38833977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jointed toxicity of TiO
    Ji Y; Zhou Y; Ma C; Feng Y; Hao Y; Rui Y; Wu W; Gui X; Le VN; Han Y; Wang Y; Xing B; Liu L; Cao W
    Plant Physiol Biochem; 2017 Jan; 110():82-93. PubMed ID: 27193349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene.
    Zhu J; Zou Z; Shen Y; Li J; Shi S; Han S; Zhan X
    Environ Pollut; 2019 Apr; 247():108-117. PubMed ID: 30669078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity.
    Li Y; Liang L; Li W; Ashraf U; Ma L; Tang X; Pan S; Tian H; Mo Z
    J Nanobiotechnology; 2021 Mar; 19(1):75. PubMed ID: 33731120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle Size Determines the Phytotoxicity of ZnO Nanoparticles in Rice (
    Li Z; Yan W; Li Y; Xiao Y; Shi Y; Zhang X; Lei J; Min K; Pan Y; Chen X; Liu Q; Jiang G
    Environ Sci Technol; 2023 Sep; 57(36):13356-13365. PubMed ID: 37653579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytotoxicity of Y
    Zhao X; Zhang W; He Y; Wang L; Li W; Yang L; Xing G
    Chemosphere; 2021 Jan; 263():127943. PubMed ID: 32822939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethylene participates in zinc oxide nanoparticles induced biochemical, molecular and ultrastructural changes in rice seedlings.
    Khan AR; Azhar W; Wu J; Ulhassan Z; Salam A; Zaidi SHR; Yang S; Song G; Gan Y
    Ecotoxicol Environ Saf; 2021 Dec; 226():112844. PubMed ID: 34619479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings.
    Chou TS; Chao YY; Huang WD; Hong CY; Kao CH
    J Plant Physiol; 2011 Jul; 168(10):1021-30. PubMed ID: 21216027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize (Zea mays L.) and Rice (Oryza sativa L.).
    Yang Z; Chen J; Dou R; Gao X; Mao C; Wang L
    Int J Environ Res Public Health; 2015 Nov; 12(12):15100-9. PubMed ID: 26633437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa).
    Wang X; Sun W; Ma X
    Environ Pollut; 2019 Sep; 252(Pt B):967-973. PubMed ID: 31252135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating growth and biochemical characteristics of rice seedlings under stress from chromium VI salt and nanoparticles.
    Noor M; Ullah A; Khan MI; Raza I; Iqbal M; Aziz A; Kim GW; Taimur N; Azizullah A; Ali I; Kim PJ
    Environ Sci Pollut Res Int; 2023 Nov; 30(55):117562-117576. PubMed ID: 37870671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.