BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30121572)

  • 1. The N terminus and transmembrane segment S1 of Kv1.5 can coassemble with the rest of the channel independently of the S1-S2 linkage.
    Lamothe SM; Hogan-Cann AE; Li W; Guo J; Yang T; Tschirhart JN; Zhang S
    J Biol Chem; 2018 Oct; 293(40):15347-15358. PubMed ID: 30121572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical stretch increases Kv1.5 current through an interaction between the S1-S2 linker and N-terminus of the channel.
    Milton AO; Wang T; Li W; Guo J; Zhang S
    J Biol Chem; 2020 Apr; 295(14):4723-4732. PubMed ID: 32122972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteolytic cleavage in the S1-S2 linker of the Kv1.5 channel does not affect channel function.
    Hogan-Cann A; Li W; Guo J; Yang T; Zhang S
    Biochim Biophys Acta; 2016 Jun; 1858(6):1082-90. PubMed ID: 26874203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-gated K+ channels contain multiple intersubunit association sites.
    Tu L; Santarelli V; Sheng Z; Skach W; Pain D; Deutsch C
    J Biol Chem; 1996 Aug; 271(31):18904-11. PubMed ID: 8702552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane biogenesis of Kv1.3.
    Tu L; Wang J; Helm A; Skach WR; Deutsch C
    Biochemistry; 2000 Feb; 39(4):824-36. PubMed ID: 10651649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for interaction between transmembrane segments in assembly of Kv1.3.
    Sheng Z; Skach W; Santarelli V; Deutsch C
    Biochemistry; 1997 Dec; 36(49):15501-13. PubMed ID: 9398279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Determinants of Kv1.3 Potassium Channels-induced Proliferation.
    Jiménez-Pérez L; Cidad P; Álvarez-Miguel I; Santos-Hipólito A; Torres-Merino R; Alonso E; de la Fuente MÁ; López-López JR; Pérez-García MT
    J Biol Chem; 2016 Feb; 291(7):3569-80. PubMed ID: 26655221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allowed N-glycosylation sites on the Kv1.2 potassium channel S1-S2 linker: implications for linker secondary structure and the glycosylation effect on channel function.
    Zhu J; Watanabe I; Poholek A; Koss M; Gomez B; Yan C; Recio-Pinto E; Thornhill WB
    Biochem J; 2003 Nov; 375(Pt 3):769-75. PubMed ID: 12911333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kv Channel S1-S2 Linker Working as a Binding Site of Human β-Defensin 2 for Channel Activation Modulation.
    Feng J; Yang W; Xie Z; Xiang F; Cao Z; Li W; Hu H; Chen Z; Wu Y
    J Biol Chem; 2015 Jun; 290(25):15487-15495. PubMed ID: 25944908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further studies of ion channels in the electroreceptor of the skate through deep sequencing, cloning and cross species comparisons.
    Clusin WT; Wu TH; Shi LF; Kao PN
    Gene; 2019 Nov; 718():143989. PubMed ID: 31326551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid outer pore movements after opening in a KV1 potassium channel are revealed by TMRM fluorescence from the S3-S4 linker, and modulated by extracellular potassium.
    Vaid M; Horne A; Claydon T; Fedida D
    Channels (Austin); 2009; 3(1):3-5. PubMed ID: 19077547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and first transmembrane segment of a voltage-gated potassium channel.
    London B; Jeron A; Zhou J; Buckett P; Han X; Mitchell GF; Koren G
    Proc Natl Acad Sci U S A; 1998 Mar; 95(6):2926-31. PubMed ID: 9501192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posttranslational modification of voltage-dependent potassium channel Kv1.5: COOH-terminal palmitoylation modulates its biological properties.
    Jindal HK; Folco EJ; Liu GX; Koren G
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2012-21. PubMed ID: 18344374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Kv1.2 potassium channel: the position of an N-glycan on the extracellular linkers affects its protein expression and function.
    Zhu J; Recio-Pinto E; Hartwig T; Sellers W; Yan J; Thornhill WB
    Brain Res; 2009 Jan; 1251():16-29. PubMed ID: 19056359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane segments critical for potassium channel function.
    Van de Voorde A; Tytgat J
    Biochem Biophys Res Commun; 1995 Apr; 209(3):1094-101. PubMed ID: 7733964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetramerization domain mutations in KCNA5 affect channel kinetics and cause abnormal trafficking patterns.
    Burg ED; Platoshyn O; Tsigelny IF; Lozano-Ruiz B; Rana BK; Yuan JX
    Am J Physiol Cell Physiol; 2010 Mar; 298(3):C496-509. PubMed ID: 20018952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kv1.5 channels are regulated by PKC-mediated endocytic degradation.
    Du Y; Wang T; Guo J; Li W; Yang T; Szendrey M; Zhang S
    J Biol Chem; 2021; 296():100514. PubMed ID: 33676894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-glycans modulate K(v)1.5 gating but have no effect on K(v)1.4 gating.
    Schwetz TA; Norring SA; Bennett ES
    Biochim Biophys Acta; 2010 Mar; 1798(3):367-75. PubMed ID: 19961828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of propofol with voltage-gated human Kv1.5 channel through specific amino acids within the pore region.
    Kojima A; Ito Y; Ding WG; Kitagawa H; Matsuura H
    Eur J Pharmacol; 2015 Oct; 764():622-632. PubMed ID: 26256861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.