These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30121769)

  • 1. A new approach for excess sludge reduction by manganese dioxide oxidation: performance, kinetics, and mechanism studies.
    Hu W; Xie Y; Zeng Y; Li P; Wang Y; Zhang Y
    Environ Sci Pollut Res Int; 2018 Oct; 25(29):29356-29365. PubMed ID: 30121769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wet oxidation of sewage sludge: full-scale experience and process modeling.
    Bertanza G; Galessi R; Menoni L; Salvetti R; Slavik E; Zanaboni S
    Environ Sci Pollut Res Int; 2015 May; 22(10):7306-16. PubMed ID: 24916064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled heating/acidification pretreatment of chemical sludge for dewatering by using waste sulfuric acid at low temperature.
    Bian B; Zhang L; Zhang Q; Zhang S; Yang Z; Yang W
    Chemosphere; 2018 Aug; 205():260-266. PubMed ID: 29702345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of reaction conditions on the wet oxidation of excess sludge from the caprolactam wastewater treatment process.
    Shulin Q; Zhongquan W; Weicheng Z; Yingxi Z; Xu Z
    Water Sci Technol; 2023 Nov; 88(10):2491-2498. PubMed ID: 38017673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of the excess sludge modification with selected chemical reagents on the increase of dissolved organic substances concentration compounds transformations in activated sludge.
    Zawieja I; Lidia W; Marta P
    Environ Res; 2017 Jul; 156():652-656. PubMed ID: 28463824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.
    Hii K; Baroutian S; Parthasarathy R; Gapes DJ; Eshtiaghi N
    Bioresour Technol; 2014 Mar; 155():289-99. PubMed ID: 24457302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.
    Prince-Pike A; Wilson DI; Baroutian S; Andrews J; Gapes DJ
    Water Res; 2015 Dec; 87():225-36. PubMed ID: 26426294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite.
    Liu C; Tang Z; Chen Y; Su S; Jiang W
    Bioresour Technol; 2010 Feb; 101(3):1097-101. PubMed ID: 19793645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of manganese oxide-modified biochar addition on methane production and heavy metal speciation during the anaerobic digestion of sewage sludge.
    Li J; Zhang M; Ye Z; Yang C
    J Environ Sci (China); 2019 Feb; 76():267-277. PubMed ID: 30528018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient determination of average valence of manganese in manganese oxides by reaction headspace gas chromatography.
    Xie WQ; Gong YX; Yu KX
    J Chromatogr A; 2017 Aug; 1511():138-142. PubMed ID: 28684007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: effects of reaction conditions and sludge matrix.
    Zhang A; Li Y
    Sci Total Environ; 2014 Sep; 493():307-23. PubMed ID: 24951888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic oxidation and spectroscopic analysis of simulated wastewater containing o-chlorophenol by using chlorine dioxide as oxidant.
    Shi L; Li N; Wang C; Wang C
    J Hazard Mater; 2010 Jun; 178(1-3):1137-40. PubMed ID: 20149526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wet oxidation of activated sludge: transformations and mechanisms.
    Urrea JL; Collado S; Laca A; Díaz M
    J Environ Manage; 2014 Dec; 146():251-259. PubMed ID: 25181609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of non-catalytic thermal hydrolysis and wet oxidation for sewage sludge degradation under moderate operating conditions.
    Malhotra M; Garg A
    J Environ Manage; 2019 May; 238():72-83. PubMed ID: 30849600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic oxidation and spectroscopic analysis of simulated wastewater containing acid chrome blue K by using chlorine dioxide as oxidant.
    Yu F; Shi L
    Water Sci Technol; 2010; 61(8):1931-40. PubMed ID: 20388989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation.
    Wang G; Sui J; Shen H; Liang S; He X; Zhang M; Xie Y; Li L; Hu Y
    J Hazard Mater; 2011 Aug; 192(1):93-8. PubMed ID: 21620565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of deflocculation on the efficiency of disperser induced dairy waste activated sludge disintegration and treatment cost.
    Devi TP; Ebenezer AV; Kumar SA; Kaliappan S; Banu JR
    Bioresour Technol; 2014 Sep; 167():151-8. PubMed ID: 24976494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.
    Chung J; Lee M; Ahn J; Bae W; Lee YW; Shim H
    J Hazard Mater; 2009 Feb; 162(1):10-6. PubMed ID: 18579292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upcycling of groundwater treatment sludge to magnetic Fe/Mn-bearing nanorod for chromate adsorption from wastewater treatment.
    Qu Z; Dong W; Chen Y; Dong G; Zhu S; Yu Y; Bian D
    PLoS One; 2020; 15(6):e0234136. PubMed ID: 32520947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.