BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 30122041)

  • 1. Methane Storage in Paddlewheel-Based Porous Coordination Cages.
    Rowland CA; Lorzing GR; Gosselin AJ; Trump BA; Yap GPA; Brown CM; Bloch ED
    J Am Chem Soc; 2018 Sep; 140(36):11153-11157. PubMed ID: 30122041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Gas Storage in Cuboctahedral Porous Coordination Cages.
    Lorzing GR; Gosselin AJ; Trump BA; York AHP; Sturluson A; Rowland CA; Yap GPA; Brown CM; Simon CM; Bloch ED
    J Am Chem Soc; 2019 Jul; 141(30):12128-12138. PubMed ID: 31271534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers.
    Sim J; Yim H; Ko N; Choi SB; Oh Y; Park HJ; Park S; Kim J
    Dalton Trans; 2014 Dec; 43(48):18017-24. PubMed ID: 25351165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High methane storage capacity in aluminum metal-organic frameworks.
    Gándara F; Furukawa H; Lee S; Yaghi OM
    J Am Chem Soc; 2014 Apr; 136(14):5271-4. PubMed ID: 24661065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the Porosity, Solubility, and Gas-Storage Properties of Cuboctahedral Coordination Cages via Amide or Ester Functionalization.
    Taggart GA; Antonio AM; Lorzing GR; Yap GPA; Bloch ED
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24913-24919. PubMed ID: 32384231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity.
    Li B; Wen HM; Wang H; Wu H; Tyagi M; Yildirim T; Zhou W; Chen B
    J Am Chem Soc; 2014 Apr; 136(17):6207-10. PubMed ID: 24730649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remarkable CO2/CH4 selectivity and CO2 adsorption capacity exhibited by polyamine-decorated metal-organic framework adsorbents.
    Yan Q; Lin Y; Kong C; Chen L
    Chem Commun (Camb); 2013 Aug; 49(61):6873-5. PubMed ID: 23793034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal-organic framework.
    Nijem N; Canepa P; Kaipa U; Tan K; Roodenko K; Tekarli S; Halbert J; Oswald IW; Arvapally RK; Yang C; Thonhauser T; Omary MA; Chabal YJ
    J Am Chem Soc; 2013 Aug; 135(34):12615-26. PubMed ID: 23805867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Low-Pressure Methane Adsorption Isotherms for Higher-Throughput Screening of Methane Storage Materials.
    Korman KJ; Decker GE; Dworzak MR; Deegan MM; Antonio AM; Taggart GA; Bloch ED
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40318-40327. PubMed ID: 32786240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of new materials for methane storage.
    Düren T; Sarkisov L; Yaghi OM; Snurr RQ
    Langmuir; 2004 Mar; 20(7):2683-9. PubMed ID: 15835137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function.
    Mastalerz M
    Acc Chem Res; 2018 Oct; 51(10):2411-2422. PubMed ID: 30203648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular engineering of intrinsic and extrinsic porosity in covalent organic cages.
    Bojdys MJ; Briggs ME; Jones JT; Adams DJ; Chong SY; Schmidtmann M; Cooper AI
    J Am Chem Soc; 2011 Oct; 133(41):16566-71. PubMed ID: 21899280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-organic frameworks with exceptionally high methane uptake: where and how is methane stored?
    Wu H; Simmons JM; Liu Y; Brown CM; Wang XS; Ma S; Peterson VK; Southon PD; Kepert CJ; Zhou HC; Yildirim T; Zhou W
    Chemistry; 2010 May; 16(17):5205-14. PubMed ID: 20358553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the effect of functional groups on gas-uptake capacities by fixing the volumes of cages A and B and modifying the inner wall of cage C in rht-type MOFs.
    Zhao X; Sun D; Yuan S; Feng S; Cao R; Yuan D; Wang S; Dou J; Sun D
    Inorg Chem; 2012 Oct; 51(19):10350-5. PubMed ID: 22988971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit?
    Farha OK; Eryazici I; Jeong NC; Hauser BG; Wilmer CE; Sarjeant AA; Snurr RQ; Nguyen ST; Yazaydın AÖ; Hupp JT
    J Am Chem Soc; 2012 Sep; 134(36):15016-21. PubMed ID: 22906112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption.
    Wu H; Chua YS; Krungleviciute V; Tyagi M; Chen P; Yildirim T; Zhou W
    J Am Chem Soc; 2013 Jul; 135(28):10525-32. PubMed ID: 23808838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly porous NbO type metal-organic framework constructed from an expanded tetracarboxylate.
    Cai J; Rao X; He Y; Yu J; Wu C; Zhou W; Yildirim T; Chen B; Qian G
    Chem Commun (Camb); 2014 Feb; 50(13):1552-4. PubMed ID: 24382488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy.
    Chen Z; Li P; Anderson R; Wang X; Zhang X; Robison L; Redfern LR; Moribe S; Islamoglu T; Gómez-Gualdrón DA; Yildirim T; Stoddart JF; Farha OK
    Science; 2020 Apr; 368(6488):297-303. PubMed ID: 32299950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predesign and systematic synthesis of 11 highly porous coordination polymers with unprecedented topology.
    Duan J; Higuchi M; Kitagawa S
    Inorg Chem; 2015 Feb; 54(4):1645-9. PubMed ID: 25594909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counter-cation modulation of hydrogen and methane storage in a sodalite-type porous metal-organic framework.
    Gong YN; Meng M; Zhong DC; Huang YL; Jiang L; Lu TB
    Chem Commun (Camb); 2012 Dec; 48(98):12002-4. PubMed ID: 23128425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.