These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 3012219)

  • 1. Glutathione metabolism in red cell aging.
    Imanishi H; Nakai T; Abe T; Takino T
    Mech Ageing Dev; 1985 Oct; 32(1):57-62. PubMed ID: 3012219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human erythrocyte separation according to age on a discontinuous "Percoll" density gradient.
    Salvo G; Caprari P; Samoggia P; Mariani G; Salvati AM
    Clin Chim Acta; 1982 Jul; 122(2):293-300. PubMed ID: 7105414
    [No Abstract]   [Full Text] [Related]  

  • 3. Glutathione-linked enzyme activities in red cell aging.
    Imanishi H; Nakai T; Abe T; Takino T
    Clin Chim Acta; 1986 Aug; 159(1):73-6. PubMed ID: 3757268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic calcium content of light dense human red cells separated by Percoll density gradients.
    Romero PJ; Romero EA; Winkler MD
    Biochim Biophys Acta; 1997 Jan; 1323(1):23-8. PubMed ID: 9030209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrifugal fractionation of human erythrocytes according to age: comparison between Ficoll and Percoll density gradients.
    Micheli V; Ricci C; Taddeo A; Gili R
    Quad Sclavo Diagn; 1985 Jun; 21(2):236-48. PubMed ID: 3001814
    [No Abstract]   [Full Text] [Related]  

  • 6. [Activity of the glutathione redox system in human erythrocytes at various ages].
    Baur G; Jung A; Wendel A
    Klin Wochenschr; 1982 Aug; 60(16):867-9. PubMed ID: 7132238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical utility of fractionating erythrocytes into "Percoll" density gradients.
    Mosca A; Paleari R; Modenese A; Rossini S; Parma R; Rocco C; Russo V; Caramenti G; Paderi ML; Galanello R
    Adv Exp Med Biol; 1991; 307():227-38. PubMed ID: 1666816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane thiol-disulfide status in glucose-6-phosphate dehydrogenase deficient red cells. Relationship to cellular glutathione.
    Kosower NS; Zipser Y; Faltin Z
    Biochim Biophys Acta; 1982 Oct; 691(2):345-52. PubMed ID: 7138865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolytic activity in human red cell populations separated by a combination of density and counterflow centrifugation. Evidence for an improved separation of red cells according to age.
    Jansen G; Hepkema BG; van der Vegt SG; Staal GE
    Scand J Haematol; 1986 Sep; 37(3):189-95. PubMed ID: 3787170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of methyl oleate hydroperoxide, a possible toxic ozone intermediate, on human normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Williams P; Calabrese EJ; Moore GS
    Ecotoxicol Environ Saf; 1983 Apr; 7(2):242-8. PubMed ID: 6851934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythrocyte age-fractionation using a Percoll-Renografin density gradient: application to autologous red cell antigen determinations in recently transfused patients.
    Branch DR; Hian AL; Carlson F; Maslow WC; Petz LD
    Am J Clin Pathol; 1983 Oct; 80(4):453-8. PubMed ID: 6312792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decrease in the antioxidant capacity of red blood cells in children with celiac disease.
    Boda M; Németh I
    Acta Paediatr Hung; 1992; 32(3):241-55. PubMed ID: 1476783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in glucose-6-phosphate dehydrogenase, copper, zinc-superoxide dismutase and catalase activities, glutathione and its metabolizing enzymes, and lipid peroxidation in rat erythrocytes with age.
    Oztürk O; Gümüşlü S
    Exp Gerontol; 2004 Feb; 39(2):211-6. PubMed ID: 15036414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in erythrocyte glutathione metabolism associated with cervical dysplasias and carcinoma in situ.
    Basu J; Duttagupta C; Vermund SH; Ahn C; Palan PR; Romney SL
    Cancer Invest; 1993; 11(6):652-9. PubMed ID: 8221197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density increase and ageing of erythrocytes in stored blood.
    Rocchigiani M; Pescaglini M; Sestini S; Micheli V; Ricci C
    J Int Med Res; 1989; 17(5):461-6. PubMed ID: 2806715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anemia and chronic renal failure: the possible role of the oxidative state of glutathione.
    Costagliola C; Romano L; Sorice P; Di Benedetto A
    Nephron; 1989; 52(1):11-4. PubMed ID: 2710264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione recycling and antioxidant enzyme activities in erythrocytes of term and preterm newborns at birth.
    Frosali S; Di Simplicio P; Perrone S; Di Giuseppe D; Longini M; Tanganelli D; Buonocore G
    Biol Neonate; 2004; 85(3):188-94. PubMed ID: 14707431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythrocyte density separation on discontinuous "Percoll" gradients.
    Mackie LH; Frank RS; Hochmuth RM
    Biorheology; 1987; 24(2):227-30. PubMed ID: 2820529
    [No Abstract]   [Full Text] [Related]  

  • 19. In vivo survival of selected murine carrier red blood cells after separation by density gradients or aqueous polymer two-phase systems.
    Pérez MT; Pinilla M; Sancho P
    Life Sci; 1999; 64(24):2273-83. PubMed ID: 10374917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The decline of catalytic enzyme activity concentration of in vivo ageing erythrocytes of the man, the dog and the rat. Approach to a quantitative diagnostic enzymology, IV. Communication.
    Lindena J; Wittenberg H; Diederichs F; Trautschold I
    J Clin Chem Clin Biochem; 1986 Jan; 24(1):49-59. PubMed ID: 3009682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.