These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 3012219)
21. Development of a novel mouse model of severe glucose-6-phosphate dehydrogenase (G6PD)-deficiency for in vitro and in vivo assessment of hemolytic toxicity to red blood cells. Ko CH; Li K; Li CL; Ng PC; Fung KP; James AE; Wong RP; Gu GJ; Fok TF Blood Cells Mol Dis; 2011 Oct; 47(3):176-81. PubMed ID: 21839656 [TBL] [Abstract][Full Text] [Related]
22. [Separation of human red blood cells of differing mean age: a method for small volumes of blood (author's transl)]. Micheli V; Berti D; Taddeo A Quad Sclavo Diagn; 1980 Sep; 16(3):318-28. PubMed ID: 7244106 [TBL] [Abstract][Full Text] [Related]
23. Effect of exercise on oxidative stress in individuals with glucose-6-phosphate dehydrogenase deficiency. Jamurtas AZ; Fatouros IG; Koukosias N; Manthou E; Tofas T; Yfanti C; Nikolaidis MG; Koutedakis Y In Vivo; 2006; 20(6B):875-80. PubMed ID: 17203782 [TBL] [Abstract][Full Text] [Related]
24. Changes in erythrocyte glucose-6-phosphate dehydrogenase (G6PD) and reduced glutathione (GSH) activities in the development of senile and diabetic cataracts. Chandrasena LG; De Silva LD; De Silva KI; Dissanayaka P; Peiris H Southeast Asian J Trop Med Public Health; 2008 Jul; 39(4):731-6. PubMed ID: 19058613 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of certain hydroxy analogues of the antimalarial drug primaquine and their in vitro methemoglobin-producing and glutathione-depleting activity in human erythrocytes. Allahyari R; Strother A; Fraser IM; Verbiscar AJ J Med Chem; 1984 Mar; 27(3):407-10. PubMed ID: 6699888 [TBL] [Abstract][Full Text] [Related]
26. Pro-oxidative effects of tea and polyphenols, epigallocatechin-3-gallate and epigallocatechin, on G6PD-deficient erythrocytes in vitro. Ko CH; Li K; Ng PC; Fung KP; Li CL; Wong RP; Chui KM; Gu GJ; Yung E; Wang CC; Fok TF Int J Mol Med; 2006 Nov; 18(5):987-94. PubMed ID: 17016632 [TBL] [Abstract][Full Text] [Related]
27. Separation of human red cells by ultracentrifugation in a discontinuous density gradient and relationship between cell age and lipid peroxidation. Nakai T; Imanishi H; Takino T Nihon Ketsueki Gakkai Zasshi; 1984 Sep; 47(6):1230-4. PubMed ID: 6516704 [No Abstract] [Full Text] [Related]
28. Changes in some cytoplasmic enzymes from red cells fractionated into age groups by centrifugation in Ficoll/Triosil gradients. Comparison of normal humans and patients with Duchenne muscular dystrophy. Galbraith DA; Watts DC Biochem J; 1980 Oct; 191(1):63-70. PubMed ID: 7470100 [TBL] [Abstract][Full Text] [Related]
29. Oxidant damage to erythrocyte membrane in glucose-6-phosphate dehydrogenase deficiency: correlation with in vivo reduced glutathione concentration and membrane protein oxidation. Johnson RM; Ravindranath Y; ElAlfy MS; Goyette G Blood; 1994 Feb; 83(4):1117-23. PubMed ID: 8111051 [TBL] [Abstract][Full Text] [Related]
30. Age-related changes of antioxidant enzyme activities, glutathione status and lipid peroxidation in rat erythrocytes after heat stress. Oztürk O; Gümüşlü S Life Sci; 2004 Aug; 75(13):1551-65. PubMed ID: 15261761 [TBL] [Abstract][Full Text] [Related]
31. Polyol pathway activation and glutathione redox status in non-insulin-dependent diabetic patients. Bravi MC; Pietrangeli P; Laurenti O; Basili S; Cassone-Faldetta M; Ferri C; De Mattia G Metabolism; 1997 Oct; 46(10):1194-8. PubMed ID: 9322806 [TBL] [Abstract][Full Text] [Related]
32. Density gradient separation of L-asparaginase-loaded human erythrocytes. Garín MI; Kravtzoff R; Chestier N; Sanz S; Pinilla M; Luque J; Ropars C Biochem Mol Biol Int; 1994 Jul; 33(4):807-14. PubMed ID: 7981667 [TBL] [Abstract][Full Text] [Related]
33. Relationship between cell age, glutathione and cation concentrations in sheep erythrocytes with a normal and a defective transport system for amino acids. Fisher TJ; Tucker EM; Young JD Biochim Biophys Acta; 1986 Oct; 884(1):211-4. PubMed ID: 3768413 [TBL] [Abstract][Full Text] [Related]
34. Density fractionation of erythrocytes by Percoll/hypaque results in only a slight enrichment for aged cells. Dale GL; Norenberg SL Biochim Biophys Acta; 1990 Dec; 1036(3):183-7. PubMed ID: 2175215 [TBL] [Abstract][Full Text] [Related]
35. Glucose-6-phosphate dehydrogenase activity and protein turnover in erythroblasts separated by velocity sedimentation at unit gravity and Percoll gradient centrifugation. Ninfali P; Palma F; Baronciani L; Piacentini G Mol Cell Biochem; 1991 Aug; 106(2):151-60. PubMed ID: 1656211 [TBL] [Abstract][Full Text] [Related]
36. Methaemoglobin and erythrocyte reducing systems in high-altitude natives. Arnaud J; Quilici JC; Gutierrez N; Beard J; Vergnes H Ann Hum Biol; 1979; 6(6):585-92. PubMed ID: 583558 [TBL] [Abstract][Full Text] [Related]
37. Characteristics of hexokinase, pyruvate kinase, and glucose-6-phosphate dehydrogenase during adult and neonatal reticulocyte maturation. Jansen G; Koenderman L; Rijksen G; Cats BP; Staal GE Am J Hematol; 1985 Nov; 20(3):203-15. PubMed ID: 4061449 [TBL] [Abstract][Full Text] [Related]
38. Irradiation shortens the survival time of red cells deficient in glucose-6-phosphate dehydrogenase. Westerman MP; Wald N; Diloy-Puray M Radiat Res; 1980 Mar; 81(3):473-7. PubMed ID: 7360895 [No Abstract] [Full Text] [Related]
39. [Separation of bone marrow cells in a Percoll discontinuous density gradient]. Borisov KB; Markina EV; Vladimirov VG Lab Delo; 1991; (5):11-2. PubMed ID: 1715930 [TBL] [Abstract][Full Text] [Related]
40. Three-step isolation of human blood monocytes using discontinuous density gradients of Percoll. Fluks AJ J Immunol Methods; 1981; 41(2):225-33. PubMed ID: 6267137 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]