BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30122292)

  • 1. FEATHER: Automated Analysis of Force Spectroscopy Unbinding and Unfolding Data via a Bayesian Algorithm.
    Heenan PR; Perkins TT
    Biophys J; 2018 Sep; 115(5):757-762. PubMed ID: 30122292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-induced changes of the apparent transition-state position in mechanical protein unfolding.
    Stigler J; Rief M
    Biophys J; 2015 Jul; 109(2):365-72. PubMed ID: 26200872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct quantification of the attempt frequency determining the mechanical unfolding of ubiquitin protein.
    Popa I; Fernández JM; Garcia-Manyes S
    J Biol Chem; 2011 Sep; 286(36):31072-9. PubMed ID: 21768096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring biological materials mechanics with atomic force microscopy - Mechanical unfolding of biopolymers.
    Gil-Redondo JC; Weber A; Toca-Herrera JL
    Microsc Res Tech; 2022 Aug; 85(8):3025-3036. PubMed ID: 35502131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Free-Energy Landscape Quantification Illustrated with a Computationally Designed Protein-Ligand Interaction.
    Van Patten WJ; Walder R; Adhikari A; Okoniewski SR; Ravichandran R; Tinberg CE; Baker D; Perkins TT
    Chemphyschem; 2018 Jan; 19(1):19-23. PubMed ID: 29069529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Details of Single-Molecule Force Spectroscopy Data Decoded by a Network-Based Automatic Clustering Algorithm.
    Cheng H; Yu J; Wang Z; Ma P; Guo C; Wang B; Zhong W; Xu B
    J Phys Chem B; 2021 Sep; 125(34):9660-9667. PubMed ID: 34425052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Precision Single-Molecule Characterization of the Folding of an HIV RNA Hairpin by Atomic Force Microscopy.
    Walder R; Van Patten WJ; Ritchie DB; Montange RK; Miller TW; Woodside MT; Perkins TT
    Nano Lett; 2018 Oct; 18(10):6318-6325. PubMed ID: 30234311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient unfolding pattern recognition in single molecule force spectroscopy data.
    Andreopoulos B; Labudde D
    Algorithms Mol Biol; 2011 Jun; 6(1):16. PubMed ID: 21645400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the calculation of energy landscape parameters from single-molecule protein unfolding experiments.
    Tych KM; Hughes ML; Bourke J; Taniguchi Y; Kawakami M; Brockwell DJ; Dougan L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012710. PubMed ID: 25679645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forces and energetics of hapten-antibody dissociation: a biased molecular dynamics simulation study.
    Paci E; Caflisch A; Plückthun A; Karplus M
    J Mol Biol; 2001 Nov; 314(3):589-605. PubMed ID: 11846569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maximum likelihood estimation of protein kinetic parameters under weak assumptions from unfolding force spectroscopy experiments.
    Aioanei D; Samorì B; Brucale M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061916. PubMed ID: 20365199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy.
    Heenan PR; Yu H; Siewny MGW; Perkins TT
    J Chem Phys; 2018 Mar; 148(12):123313. PubMed ID: 29604885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of accurate biomolecular parameters from single-molecule force spectroscopy experiments.
    Farrance OE; Paci E; Radford SE; Brockwell DJ
    ACS Nano; 2015 Feb; 9(2):1315-24. PubMed ID: 25646767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolding and identification of membrane proteins in situ.
    Galvanetto N; Ye Z; Marchesi A; Mortal S; Maity S; Laio A; Torre V
    Elife; 2022 Sep; 11():. PubMed ID: 36094473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the energy landscape of biomolecules using single molecule force correlation spectroscopy: theory and applications.
    Barsegov V; Klimov DK; Thirumalai D
    Biophys J; 2006 Jun; 90(11):3827-41. PubMed ID: 16533852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel pattern recognition algorithm to classify membrane protein unfolding pathways with high-throughput single-molecule force spectroscopy.
    Marsico A; Labudde D; Sapra T; Muller DJ; Schroeder M
    Bioinformatics; 2007 Jan; 23(2):e231-6. PubMed ID: 17237097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy.
    Walder R; Van Patten WJ; Adhikari A; Perkins TT
    ACS Nano; 2018 Jan; 12(1):198-207. PubMed ID: 29244486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new atomic force microscope force ramp technique using digital force feedback control reveals mechanically weak protein unfolding events.
    Kawakami M; Smith DA
    Nanotechnology; 2008 Dec; 19(49):495704. PubMed ID: 21730684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolding Dynamics of Ubiquitin from Constant Force MD Simulation: Entropy-Enthalpy Interplay Shapes the Free-Energy Landscape.
    Sahoo AK; Bagchi B; Maiti PK
    J Phys Chem B; 2019 Feb; 123(6):1228-1236. PubMed ID: 30665306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple unfolding pathways of leucine binding protein (LBP) probed by single-molecule force spectroscopy (SMFS).
    Kotamarthi HC; Sharma R; Narayan S; Ray S; Ainavarapu SR
    J Am Chem Soc; 2013 Oct; 135(39):14768-74. PubMed ID: 24015877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.