These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30122292)

  • 21. Thermal versus mechanical unfolding in a model protein.
    Tapia-Rojo R; Mazo JJ; Falo F
    J Chem Phys; 2019 Nov; 151(18):185105. PubMed ID: 31731855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonparametric density estimation and optimal bandwidth selection for protein unfolding and unbinding data.
    Bura E; Zhmurov A; Barsegov V
    J Chem Phys; 2009 Jan; 130(1):015102. PubMed ID: 19140635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-molecule force-clamp spectroscopy: dwell time analysis and practical considerations.
    Cao Y; Li H
    Langmuir; 2011 Feb; 27(4):1440-7. PubMed ID: 21117668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-throughput single-molecule force spectroscopy for membrane proteins.
    Bosshart PD; Casagrande F; Frederix PL; Ratera M; Bippes CA; Müller DJ; Palacin M; Engel A; Fotiadis D
    Nanotechnology; 2008 Sep; 19(38):384014. PubMed ID: 21832573
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical Unfolding and Refolding of NanoLuc via Single-Molecule Force Spectroscopy and Computer Simulations.
    Apostolidou D; Zhang P; Yang W; Marszalek PE
    Biomacromolecules; 2022 Dec; 23(12):5164-5178. PubMed ID: 36350253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlations within polyprotein forced unfolding dwell-times introduce sequential dependency.
    Chetrit E; Meroz Y; Klausner Z; Berkovich R
    J Struct Biol; 2020 Jun; 210(3):107495. PubMed ID: 32173465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forced-unfolding and force-quench refolding of RNA hairpins.
    Hyeon C; Thirumalai D
    Biophys J; 2006 May; 90(10):3410-27. PubMed ID: 16473903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Force Spectroscopy in Mechanical Protein Domains Unfolding.
    Cheirdaris DG
    Adv Exp Med Biol; 2021; 1339():187-193. PubMed ID: 35023106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated detection of protein unfolding events in atomic force microscopy force curves.
    García-Massó X; Huber MC; Friedmann J; Gonzalez LM; Schiller SM; Toca-Herrera JL
    Microsc Res Tech; 2016 Nov; 79(11):1105-1111. PubMed ID: 27571574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic force spectroscopy of the specific interaction between the PDZ domain and its recognition peptides.
    Maki T; Kidoaki S; Usui K; Suzuki H; Ito M; Ito F; Hayashizaki Y; Matsuda T
    Langmuir; 2007 Feb; 23(5):2668-73. PubMed ID: 17269804
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy.
    Brujic J; Hermans RI; Garcia-Manyes S; Walther KA; Fernandez JM
    Biophys J; 2007 Apr; 92(8):2896-903. PubMed ID: 17259284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Forced unbinding of individual urea-aminotriazine supramolecular polymers by atomic force microscopy: a closer look at the potential energy landscape and binding lengths at fixed loading rates.
    Embrechts A; Schönherr H; Vancso GJ
    J Phys Chem B; 2012 Jan; 116(1):565-70. PubMed ID: 22087775
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving single molecule force spectroscopy through automated real-time data collection and quantification of experimental conditions.
    Scholl ZN; Marszalek PE
    Ultramicroscopy; 2014 Jan; 136():7-14. PubMed ID: 24001740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.
    Chen H; Yuan G; Winardhi RS; Yao M; Popa I; Fernandez JM; Yan J
    J Am Chem Soc; 2015 Mar; 137(10):3540-6. PubMed ID: 25726700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identifying sequential substrate binding at the single-molecule level by enzyme mechanical stabilization.
    Rivas-Pardo JA; Alegre-Cebollada J; Ramírez-Sarmiento CA; Fernandez JM; Guixé V
    ACS Nano; 2015; 9(4):3996-4005. PubMed ID: 25840594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic force spectroscopy of single DNA molecules.
    Strunz T; Oroszlan K; Schäfer R; Güntherodt HJ
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):11277-82. PubMed ID: 10500167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape.
    Schlierf M; Rief M
    Biophys J; 2006 Feb; 90(4):L33-5. PubMed ID: 16361331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics.
    Verdorfer T; Bernardi RC; Meinhold A; Ott W; Luthey-Schulten Z; Nash MA; Gaub HE
    J Am Chem Soc; 2017 Dec; 139(49):17841-17852. PubMed ID: 29058444
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Topography of the free-energy landscape probed via mechanical unfolding of proteins.
    Kirmizialtin S; Huang L; Makarov DE
    J Chem Phys; 2005 Jun; 122(23):234915. PubMed ID: 16008495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. β-Connectin studies by small-angle x-ray scattering and single-molecule force spectroscopy by atomic force microscopy.
    Marchetti S; Sbrana F; Toscano A; Fratini E; Carlà M; Vassalli M; Tiribilli B; Pacini A; Gambi CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051919. PubMed ID: 21728583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.