These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 30122800)
1. Multiorgan structures detection using deep convolutional neural networks. Onieva JO; Serrano GG; Young TP; Washko GR; Carbayo MJL; Estépar RSJ Proc SPIE Int Soc Opt Eng; 2018 Feb; 10574():. PubMed ID: 30122800 [TBL] [Abstract][Full Text] [Related]
2. A Deep Learning Algorithm to Identify Anatomical Landmarks on Computed Tomography of the Temporal Bone. Hasan Z; Key S; Lee M; Chen F; Aweidah L; Esmaili A; Sacks R; Singh N J Int Adv Otol; 2023 Oct; 19(5):360-367. PubMed ID: 37789621 [TBL] [Abstract][Full Text] [Related]
3. ConvNet-Based Localization of Anatomical Structures in 3-D Medical Images. de Vos BD; Wolterink JM; de Jong PA; Leiner T; Viergever MA; Isgum I IEEE Trans Med Imaging; 2017 Jul; 36(7):1470-1481. PubMed ID: 28252392 [TBL] [Abstract][Full Text] [Related]
4. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897 [TBL] [Abstract][Full Text] [Related]
5. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Zhou X; Takayama R; Wang S; Hara T; Fujita H Med Phys; 2017 Oct; 44(10):5221-5233. PubMed ID: 28730602 [TBL] [Abstract][Full Text] [Related]
6. Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans. Humpire-Mamani GE; Setio AAA; van Ginneken B; Jacobs C Phys Med Biol; 2018 Apr; 63(8):085003. PubMed ID: 29512516 [TBL] [Abstract][Full Text] [Related]
7. Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks. Zhang J; Liu M; Shen D IEEE Trans Image Process; 2017 Oct; 26(10):4753-4764. PubMed ID: 28678706 [TBL] [Abstract][Full Text] [Related]
8. Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views. Bier B; Goldmann F; Zaech JN; Fotouhi J; Hegeman R; Grupp R; Armand M; Osgood G; Navab N; Maier A; Unberath M Int J Comput Assist Radiol Surg; 2019 Sep; 14(9):1463-1473. PubMed ID: 31006106 [TBL] [Abstract][Full Text] [Related]
9. Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Feng X; Qing K; Tustison NJ; Meyer CH; Chen Q Med Phys; 2019 May; 46(5):2169-2180. PubMed ID: 30830685 [TBL] [Abstract][Full Text] [Related]
10. Landmark constellation models for medical image content identification and localization. Hansis E; Lorenz C Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1285-95. PubMed ID: 26662202 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images. Noothout JMH; De Vos BD; Wolterink JM; Postma EM; Smeets PAM; Takx RAP; Leiner T; Viergever MA; Isgum I IEEE Trans Med Imaging; 2020 Dec; 39(12):4011-4022. PubMed ID: 32746142 [TBL] [Abstract][Full Text] [Related]
12. MR-based synthetic CT generation using a deep convolutional neural network method. Han X Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624 [TBL] [Abstract][Full Text] [Related]
13. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Wolterink JM; Leiner T; de Vos BD; van Hamersvelt RW; Viergever MA; Išgum I Med Image Anal; 2016 Dec; 34():123-136. PubMed ID: 27138584 [TBL] [Abstract][Full Text] [Related]
14. An application of cascaded 3D fully convolutional networks for medical image segmentation. Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583 [TBL] [Abstract][Full Text] [Related]
15. Automated localization of the medial clavicular epiphyseal cartilages using an object detection network: a step towards deep learning-based forensic age assessment. Wesp P; Sabel BO; Mittermeier A; Stüber AT; Jeblick K; Schinke P; Mühlmann M; Fischer F; Penning R; Ricke J; Ingrisch M; Schachtner BM Int J Legal Med; 2023 May; 137(3):733-742. PubMed ID: 36729183 [TBL] [Abstract][Full Text] [Related]
16. Automatic bone segmentation in whole-body CT images. Klein A; Warszawski J; Hillengaß J; Maier-Hein KH Int J Comput Assist Radiol Surg; 2019 Jan; 14(1):21-29. PubMed ID: 30426400 [TBL] [Abstract][Full Text] [Related]
17. Computationally efficient deep neural network for computed tomography image reconstruction. Wu D; Kim K; Li Q Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144 [TBL] [Abstract][Full Text] [Related]
18. Detection and diagnosis of colitis on computed tomography using deep convolutional neural networks. Liu J; Wang D; Lu L; Wei Z; Kim L; Turkbey EB; Sahiner B; Petrick NA; Summers RM Med Phys; 2017 Sep; 44(9):4630-4642. PubMed ID: 28594460 [TBL] [Abstract][Full Text] [Related]
19. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images. Pang S; Yu Z; Orgun MA Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085 [TBL] [Abstract][Full Text] [Related]
20. Automatic liver segmentation by integrating fully convolutional networks into active contour models. Guo X; Schwartz LH; Zhao B Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]