These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 30123127)
1. QM/MM Description of Newly Selected Catalytic Bioscavengers Against Organophosphorus Compounds Revealed Reactivation Stimulus Mediated by Histidine Residue in the Acyl-Binding Loop. Zlobin A; Mokrushina Y; Terekhov S; Zalevsky A; Bobik T; Stepanova A; Aliseychik M; Kartseva O; Panteleev S; Golovin A; Belogurov A; Gabibov A; Smirnov I Front Pharmacol; 2018; 9():834. PubMed ID: 30123127 [TBL] [Abstract][Full Text] [Related]
2. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents. Lushchekina SV; Schopfer LM; Grigorenko BL; Nemukhin AV; Varfolomeev SD; Lockridge O; Masson P Front Pharmacol; 2018; 9():211. PubMed ID: 29593539 [TBL] [Abstract][Full Text] [Related]
3. A collaborative endeavor to design cholinesterase-based catalytic scavengers against toxic organophosphorus esters. Masson P; Nachon F; Broomfield CA; Lenz DE; Verdier L; Schopfer LM; Lockridge O Chem Biol Interact; 2008 Sep; 175(1-3):273-80. PubMed ID: 18508040 [TBL] [Abstract][Full Text] [Related]
4. Why does the G117H mutation considerably improve the activity of human butyrylcholinesterase against sarin? Insights from quantum mechanical/molecular mechanical free energy calculations. Yao Y; Liu J; Zhan CG Biochemistry; 2012 Nov; 51(44):8980-92. PubMed ID: 23092211 [TBL] [Abstract][Full Text] [Related]
5. Pseudo-catalytic scavenging: searching for a suitable reactivator of phosphorylated butyrylcholinesterase. Kovarik Z; Katalinić M; Sinko G; Binder J; Holas O; Jung YS; Musilova L; Jun D; Kuca K Chem Biol Interact; 2010 Sep; 187(1-3):167-71. PubMed ID: 20206154 [TBL] [Abstract][Full Text] [Related]
6. In search of a catalytic bioscavenger for the prophylaxis of nerve agent toxicity. diTargiani RC; Chandrasekaran L; Belinskaya T; Saxena A Chem Biol Interact; 2010 Sep; 187(1-3):349-54. PubMed ID: 20176006 [TBL] [Abstract][Full Text] [Related]
7. A comprehensive evaluation of novel oximes in creation of butyrylcholinesterase-based nerve agent bioscavengers. Katalinić M; Maček Hrvat N; Baumann K; Morasi Piperčić S; Makarić S; Tomić S; Jović O; Hrenar T; Miličević A; Jelić D; Žunec S; Primožič I; Kovarik Z Toxicol Appl Pharmacol; 2016 Nov; 310():195-204. PubMed ID: 27654152 [TBL] [Abstract][Full Text] [Related]
8. Reactivation kinetics of 31 structurally different bispyridinium oximes with organophosphate-inhibited human butyrylcholinesterase. Horn G; Wille T; Musilek K; Kuca K; Thiermann H; Worek F Arch Toxicol; 2015 Mar; 89(3):405-14. PubMed ID: 24912784 [TBL] [Abstract][Full Text] [Related]
9. Bioscavengers for the protection of humans against organophosphate toxicity. Doctor BP; Saxena A Chem Biol Interact; 2005 Dec; 157-158():167-71. PubMed ID: 16293236 [TBL] [Abstract][Full Text] [Related]
10. Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents. Trovaslet-Leroy M; Musilova L; Renault F; Brazzolotto X; Misik J; Novotny L; Froment MT; Gillon E; Loiodice M; Verdier L; Masson P; Rochu D; Jun D; Nachon F Toxicol Lett; 2011 Sep; 206(1):14-23. PubMed ID: 21683774 [TBL] [Abstract][Full Text] [Related]
11. Progress in the development of enzyme-based nerve agent bioscavengers. Nachon F; Brazzolotto X; Trovaslet M; Masson P Chem Biol Interact; 2013 Dec; 206(3):536-44. PubMed ID: 23811386 [TBL] [Abstract][Full Text] [Related]
12. Engineering Dynamic Surface Peptide Networks on Butyrylcholinesterase Hester KP; Bhattarai K; Jiang H; Agarwal PK; Pope C Chem Res Toxicol; 2019 Sep; 32(9):1801-1810. PubMed ID: 31411024 [TBL] [Abstract][Full Text] [Related]
13. Computer-designed active human butyrylcholinesterase double mutant with a new catalytic triad. Grigorenko BL; Novichkova DA; Lushchekina SV; Zueva IV; Schopfer LM; Nemukhin AV; Varfolomeev SD; Lockridge O; Masson P Chem Biol Interact; 2019 Jun; 306():138-146. PubMed ID: 31009643 [TBL] [Abstract][Full Text] [Related]
14. NMR evidence for a short, strong hydrogen bond at the active site of a cholinesterase. Viragh C; Harris TK; Reddy PM; Massiah MA; Mildvan AS; Kovach IM Biochemistry; 2000 Dec; 39(51):16200-5. PubMed ID: 11123949 [TBL] [Abstract][Full Text] [Related]
15. Catalytic bioscavengers against organophosphorus agents: mechanistic issues of self-reactivating cholinesterases. Lushchekina S; Masson P Toxicology; 2018 Nov; 409():91-102. PubMed ID: 30056174 [TBL] [Abstract][Full Text] [Related]
16. Role of water in aging of human butyrylcholinesterase inhibited by echothiophate: the crystal structure suggests two alternative mechanisms of aging. Nachon F; Asojo OA; Borgstahl GE; Masson P; Lockridge O Biochemistry; 2005 Feb; 44(4):1154-62. PubMed ID: 15667209 [TBL] [Abstract][Full Text] [Related]
17. Catalytic mechanism and energy barriers for butyrylcholinesterase-catalyzed hydrolysis of cocaine. Zhan CG; Gao D Biophys J; 2005 Dec; 89(6):3863-72. PubMed ID: 16319079 [TBL] [Abstract][Full Text] [Related]
18. Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure. Nigg HN; Knaak JB Rev Environ Contam Toxicol; 2000; 163():29-111. PubMed ID: 10771584 [TBL] [Abstract][Full Text] [Related]
19. Human butyrylcholinesterase polymorphism: Molecular modeling. Lushchekina S; Delacour H; Lockridge O; Masson P Int J Risk Saf Med; 2015; 27 Suppl 1():S80-1. PubMed ID: 26639724 [TBL] [Abstract][Full Text] [Related]
20. Human paraoxonase double mutants hydrolyze V and G class organophosphorus nerve agents. Kirby SD; Norris JR; Richard Smith J; Bahnson BJ; Cerasoli DM Chem Biol Interact; 2013 Mar; 203(1):181-5. PubMed ID: 23159884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]