These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30123129)

  • 1. Small-Conductance Ca
    Song Y; Zhu JS; Hua R; Du L; Huang ST; Stackman RW; Zhang G; Zhang YM
    Front Pharmacol; 2018; 9():840. PubMed ID: 30123129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predisposition of Neonatal Maternal Separation to Visceral Hypersensitivity via Downregulation of Small-Conductance Calcium-Activated Potassium Channel Subtype 2 (SK2) in Mice.
    Wu K; Gao JH; Hua R; Peng XH; Wang H; Zhang YM
    Neural Plast; 2020; 2020():8876230. PubMed ID: 33029124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small-Conductance Ca
    Ji NN; Du L; Wang Y; Wu K; Chen ZY; Hua R; Zhang YM
    Front Pharmacol; 2020; 11():605618. PubMed ID: 33584280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of excitability in tonic firing substantia gelatinosa neurons of the spinal cord by small-conductance Ca(2+)-activated K(+) channels.
    Yang K
    Neuropharmacology; 2016 Jun; 105():15-24. PubMed ID: 26777279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo pharmacological manipulation of small conductance Ca(2+)-activated K(+) channels influences motor behavior, object memory and fear conditioning.
    Vick KA; Guidi M; Stackman RW
    Neuropharmacology; 2010 Mar; 58(3):650-9. PubMed ID: 19944112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular determinants of Ca2+-dependent K+ channel function in rat dorsal vagal neurones.
    Pedarzani P; Kulik A; Muller M; Ballanyi K; Stocker M
    J Physiol; 2000 Sep; 527 Pt 2(Pt 2):283-90. PubMed ID: 10970429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+ channels.
    Hougaard C; Eriksen BL; Jørgensen S; Johansen TH; Dyhring T; Madsen LS; Strøbaek D; Christophersen P
    Br J Pharmacol; 2007 Jul; 151(5):655-65. PubMed ID: 17486140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Expression profiles of brain-derived neurotrophic factor in the spinal dorsal horn of young rats with visceral hypersensitivity].
    Wu B; Xu C; Huang HH
    Zhongguo Dang Dai Er Ke Za Zhi; 2016 Mar; 18(3):277-81. PubMed ID: 26975829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The small conductance Ca
    Rice CA; Stackman RW
    Neuropharmacology; 2024 Jul; 252():109960. PubMed ID: 38631563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of hyperpolarization-activated, cyclic nucleotide-gated cation channels in dorsal root ganglion in neuropathic pain.
    Wan Y
    Sheng Li Xue Bao; 2008 Oct; 60(5):579-80. PubMed ID: 18958363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blockade of BK channels attenuates chronic visceral hypersensitivity in an IBS-like rat model.
    Fan F; Chen Y; Chen Z; Guan L; Ye Z; Tang Y; Chen A; Lin C
    Mol Pain; 2021; 17():17448069211040364. PubMed ID: 34407673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of SK2 channels preserves ER Ca²⁺ homeostasis and protects against ER stress-induced cell death.
    Richter M; Vidovic N; Honrath B; Mahavadi P; Dodel R; Dolga AM; Culmsee C
    Cell Death Differ; 2016 May; 23(5):814-27. PubMed ID: 26586570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca
    Kopach O; Dobropolska Y; Belan P; Voitenko N
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neonatal Colonic Inflammation Increases Spinal Transmission and Cystathionine β-Synthetase Expression in Spinal Dorsal Horn of Rats with Visceral Hypersensitivity.
    Zhao L; Xiao Y; Weng RX; Liu X; Zhang PA; Hu CY; Yu SP; Xu GY
    Front Pharmacol; 2017; 8():696. PubMed ID: 29046639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small conductance Ca2+-activated K+ channels as targets of CNS drug development.
    Blank T; Nijholt I; Kye MJ; Spiess J
    Curr Drug Targets CNS Neurol Disord; 2004 Jun; 3(3):161-7. PubMed ID: 15180477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity.
    Hammond RS; Bond CT; Strassmaier T; Ngo-Anh TJ; Adelman JP; Maylie J; Stackman RW
    J Neurosci; 2006 Feb; 26(6):1844-53. PubMed ID: 16467533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the potassium chloride cotransporter isoform 2-mediated spinal chloride homeostasis in a rat model of visceral hypersensitivity.
    Tang D; Qian AH; Song DD; Ben QW; Yao WY; Sun J; Li WG; Xu TL; Yuan YZ
    Am J Physiol Gastrointest Liver Physiol; 2015 May; 308(9):G767-78. PubMed ID: 25792562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sprouting of colonic afferent central terminals and increased spinal mitogen-activated protein kinase expression in a mouse model of chronic visceral hypersensitivity.
    Harrington AM; Brierley SM; Isaacs N; Hughes PA; Castro J; Blackshaw LA
    J Comp Neurol; 2012 Jul; 520(10):2241-55. PubMed ID: 22237807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The distribution of small and intermediate conductance calcium-activated potassium channels in the rat sensory nervous system.
    Mongan LC; Hill MJ; Chen MX; Tate SN; Collins SD; Buckby L; Grubb BD
    Neuroscience; 2005; 131(1):161-75. PubMed ID: 15680700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.