BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30123211)

  • 41. Phenotypic consequences resulting from a methionine-to-valine substitution at position 48 in the HPr protein of Streptococcus salivarius.
    Plamondon P; Brochu D; Thomas S; Fradette J; Gauthier L; Vaillancourt K; Buckley N; Frenette M; Vadeboncoeur C
    J Bacteriol; 1999 Nov; 181(22):6914-21. PubMed ID: 10559156
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Non-Lantibiotic Bacteriocin Garvicin Q Targets Man-PTS in a Broad Spectrum of Sensitive Bacterial Genera.
    Tymoszewska A; Diep DB; Wirtek P; Aleksandrzak-Piekarczyk T
    Sci Rep; 2017 Aug; 7(1):8359. PubMed ID: 28827688
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis.
    Pannala VR; Bhartiya S; Venkatesh KV
    FEBS J; 2010 Jul; 277(14):2987-3002. PubMed ID: 20528923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Random mutagenesis identifies novel genes involved in the secretion of antimicrobial, cell wall-lytic enzymes by Lactococcus lactis.
    Tan YP; Giffard PM; Barry DG; Huston WM; Turner MS
    Appl Environ Microbiol; 2008 Dec; 74(24):7490-6. PubMed ID: 18931288
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth.
    Stoll R; Goebel W
    Microbiology (Reading); 2010 Apr; 156(Pt 4):1069-1083. PubMed ID: 20056707
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative Transcriptomic Analysis of
    Giaretta S; Treu L; Vendramin V; da Silva Duarte V; Tarrah A; Campanaro S; Corich V; Giacomini A
    Front Microbiol; 2018; 9():1765. PubMed ID: 30131781
    [No Abstract]   [Full Text] [Related]  

  • 47. Expression of prophage-encoded endolysins contributes to autolysis of Lactococcus lactis.
    Visweswaran GR; Kurek D; Szeliga M; Pastrana FR; Kuipers OP; Kok J; Buist G
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1099-1110. PubMed ID: 27660179
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.
    van der Meulen SB; de Jong A; Kok J
    RNA Biol; 2016; 13(3):353-66. PubMed ID: 26950529
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Restricted sugar uptake by sugar-induced internalization of the yeast lactose/galactose permease Lac12.
    Rigamonte TA; Silveira WB; Fietto LG; Castro IM; Breunig KD; Passos FM
    FEMS Yeast Res; 2011 May; 11(3):243-51. PubMed ID: 21205157
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of sugar uptake via the phosphoenolpyruvate-dependent phosphotransferase systems in Bacillus subtilis and Lactococcus lactis is mediated by ATP-dependent phosphorylation of seryl residue 46 in HPr.
    Ye JJ; Saier MH
    J Bacteriol; 1996 Jun; 178(12):3557-63. PubMed ID: 8655554
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The extracellular loop of Man-PTS subunit IID is responsible for the sensitivity of Lactococcus garvieae to garvicins A, B and C.
    Tymoszewska A; Diep DB; Aleksandrzak-Piekarczyk T
    Sci Rep; 2018 Oct; 8(1):15790. PubMed ID: 30361679
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Plasmid Complement of the Cheese Isolate Lactococcus garvieae IPLA 31405 Revealed Adaptation to the Dairy Environment.
    Flórez AB; Mayo B
    PLoS One; 2015; 10(5):e0126101. PubMed ID: 25942497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transfer of Tn916 between Lactococcus lactis subsp. lactis strains is nontranspositional: evidence for a chromosomal fertility function in strain MG1363.
    Bringel F; Van Alstine GL; Scott JR
    J Bacteriol; 1992 Sep; 174(18):5840-7. PubMed ID: 1325966
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism.
    Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P
    Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Galactose and lactose transport in Kluyveromyces lactis.
    Boze H; Moulin G; Galzy P
    Folia Microbiol (Praha); 1987; 32(2):107-11. PubMed ID: 18425681
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Factors influencing galactose utilization.
    BARKI VH; FEIGELSON P
    J Biol Chem; 1949 Dec; 181(2):565-71. PubMed ID: 15393776
    [No Abstract]   [Full Text] [Related]  

  • 57. Proving of Saccharum Lactis.
    Fincke B
    Homoeopath Physician; 1890 Mar; 10(3):137-138. PubMed ID: 37135556
    [No Abstract]   [Full Text] [Related]  

  • 58. The efflux pumps Rv1877 and Rv0191 play differential roles in the protection of
    Sao Emani C; Reiling N
    Front Microbiol; 2024; 15():1359188. PubMed ID: 38516013
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transcriptomic profiling reveals differences in the adaptation of two Tetragenococcus halophilus strains to a lupine moromi model medium.
    Link T; Ehrmann MA
    BMC Microbiol; 2023 Jan; 23(1):14. PubMed ID: 36639757
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phenotype testing, genome analysis, and metabolic interactions of three lactic acid bacteria strains existing as a consortium in a naturally fermented milk.
    Rodríguez J; Vázquez L; Flórez AB; Mayo B
    Front Microbiol; 2022; 13():1000683. PubMed ID: 36212860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.