These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 30123774)

  • 1. Targeting T Cell Metabolism for Improvement of Cancer Immunotherapy.
    Le Bourgeois T; Strauss L; Aksoylar HI; Daneshmandi S; Seth P; Patsoukis N; Boussiotis VA
    Front Oncol; 2018; 8():237. PubMed ID: 30123774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of l-Arginine Metabolism on Immune Response and Anticancer Immunotherapy.
    Kim SH; Roszik J; Grimm EA; Ekmekcioglu S
    Front Oncol; 2018; 8():67. PubMed ID: 29616189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy.
    Huang L; Xu H; Peng G
    Cell Mol Immunol; 2018 May; 15(5):428-437. PubMed ID: 29553135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.
    Ascierto PA; Agarwala S; Botti G; Cesano A; Ciliberto G; Davies MA; Demaria S; Dummer R; Eggermont AM; Ferrone S; Fu YX; Gajewski TF; Garbe C; Huber V; Khleif S; Krauthammer M; Lo RS; Masucci G; Palmieri G; Postow M; Puzanov I; Silk A; Spranger S; Stroncek DF; Tarhini A; Taube JM; Testori A; Wang E; Wargo JA; Yee C; Zarour H; Zitvogel L; Fox BA; Mozzillo N; Marincola FM; Thurin M
    J Transl Med; 2016 Nov; 14(1):313. PubMed ID: 27846884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy.
    Kouidhi S; Ben Ayed F; Benammar Elgaaied A
    Front Immunol; 2018; 9():353. PubMed ID: 29527212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the tumor microenvironment and T cell metabolism for effective cancer immunotherapy.
    Hope HC; Salmond RJ
    Eur J Immunol; 2019 Aug; 49(8):1147-1152. PubMed ID: 31270810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune-mediated anti-tumor effects of metformin; targeting metabolic reprogramming of T cells as a new possible mechanism for anti-cancer effects of metformin.
    Bahrambeigi S; Shafiei-Irannejad V
    Biochem Pharmacol; 2020 Apr; 174():113787. PubMed ID: 31884044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy.
    Gao A; Sun Y; Peng G
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):278-285. PubMed ID: 29649510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Commentary on: Combination of Metabolic Intervention and T Cell Therapy Enhances Solid Tumor Immunotherapy.
    Christofides A; Tijaro-Ovalle NM; Boussiotis VA
    Immunometabolism; 2021; 3(2):. PubMed ID: 33927895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Metabolism to Control Immune Responses in Cancer and Improve Checkpoint Blockade Immunotherapy.
    Luby A; Alves-Guerra MC
    Cancers (Basel); 2021 Nov; 13(23):. PubMed ID: 34885023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic regulation of T cells in the tumor microenvironment by nutrient availability and diet.
    Zhao S; Peralta RM; Avina-Ochoa N; Delgoffe GM; Kaech SM
    Semin Immunol; 2021 Feb; 52():101485. PubMed ID: 34462190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunotherapy and tumor microenvironment.
    Tang H; Qiao J; Fu YX
    Cancer Lett; 2016 Jan; 370(1):85-90. PubMed ID: 26477683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting iNOS to increase efficacy of immunotherapies.
    Ekmekcioglu S; Grimm EA; Roszik J
    Hum Vaccin Immunother; 2017 May; 13(5):1105-1108. PubMed ID: 28121247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens.
    Gubin MM; Zhang X; Schuster H; Caron E; Ward JP; Noguchi T; Ivanova Y; Hundal J; Arthur CD; Krebber WJ; Mulder GE; Toebes M; Vesely MD; Lam SS; Korman AJ; Allison JP; Freeman GJ; Sharpe AH; Pearce EL; Schumacher TN; Aebersold R; Rammensee HG; Melief CJ; Mardis ER; Gillanders WE; Artyomov MN; Schreiber RD
    Nature; 2014 Nov; 515(7528):577-81. PubMed ID: 25428507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of regulatory T cells in cancer immunity.
    Takeuchi Y; Nishikawa H
    Int Immunol; 2016 Aug; 28(8):401-9. PubMed ID: 27160722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverting Immune Suppression to Enhance Cancer Immunotherapy.
    Guerrouahen BS; Maccalli C; Cugno C; Rutella S; Akporiaye ET
    Front Oncol; 2019; 9():1554. PubMed ID: 32039024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of costimulatory and inhibitory receptors in FoxP3
    Toker A; Ohashi PS
    Adv Cancer Res; 2019; 144():193-261. PubMed ID: 31349899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysfunctional T cell metabolism in the tumor microenvironment.
    Beckermann KE; Dudzinski SO; Rathmell JC
    Cytokine Growth Factor Rev; 2017 Jun; 35():7-14. PubMed ID: 28456467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Notch Signaling in Myeloid Cells as a Regulator of Tumor Immune Responses.
    Hossain F; Majumder S; Ucar DA; Rodriguez PC; Golde TE; Minter LM; Osborne BA; Miele L
    Front Immunol; 2018; 9():1288. PubMed ID: 29915603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting T cell metabolism in the tumor microenvironment: an anti-cancer therapeutic strategy.
    Yin Z; Bai L; Li W; Zeng T; Tian H; Cui J
    J Exp Clin Cancer Res; 2019 Sep; 38(1):403. PubMed ID: 31519198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.