These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Atmospheric implications of hydration on the formation of methanesulfonic acid and methylamine clusters: A theoretical study. Chen D; Li D; Wang C; Luo Y; Liu F; Wang W Chemosphere; 2020 Apr; 244():125538. PubMed ID: 31835047 [TBL] [Abstract][Full Text] [Related]
5. Particle formation and growth from oxalic acid, methanesulfonic acid, trimethylamine and water: a combined experimental and theoretical study. Arquero KD; Xu J; Gerber RB; Finlayson-Pitts BJ Phys Chem Chem Phys; 2017 Oct; 19(41):28286-28301. PubMed ID: 29028063 [TBL] [Abstract][Full Text] [Related]
6. The Role of Oxalic Acid in New Particle Formation from Methanesulfonic Acid, Methylamine, and Water. Arquero KD; Gerber RB; Finlayson-Pitts BJ Environ Sci Technol; 2017 Feb; 51(4):2124-2130. PubMed ID: 28117992 [TBL] [Abstract][Full Text] [Related]
8. Reactions of Methanesulfonic Acid with Amines and Ammonia as a Source of New Particles in Air. Chen H; Varner ME; Gerber RB; Finlayson-Pitts BJ J Phys Chem B; 2016 Mar; 120(8):1526-36. PubMed ID: 26379061 [TBL] [Abstract][Full Text] [Related]
9. Integrated experimental and theoretical approach to probe the synergistic effect of ammonia in methanesulfonic acid reactions with small alkylamines. Perraud V; Xu J; Gerber RB; Finlayson-Pitts BJ Environ Sci Process Impacts; 2020 Feb; 22(2):305-328. PubMed ID: 31904037 [TBL] [Abstract][Full Text] [Related]
11. Clusters of hydrated methane sulfonic acid CH3SO3H.(H2O)n (n = 1-5): a theoretical study. Wang L J Phys Chem A; 2007 May; 111(18):3642-51. PubMed ID: 17432836 [TBL] [Abstract][Full Text] [Related]
12. New Particle Formation from Methanesulfonic Acid and Amines/Ammonia as a Function of Temperature. Chen H; Finlayson-Pitts BJ Environ Sci Technol; 2017 Jan; 51(1):243-252. PubMed ID: 27935699 [TBL] [Abstract][Full Text] [Related]
13. Structural Effects of Amines in Enhancing Methanesulfonic Acid-Driven New Particle Formation. Shen J; Elm J; Xie HB; Chen J; Niu J; Vehkamäki H Environ Sci Technol; 2020 Nov; 54(21):13498-13508. PubMed ID: 33091300 [TBL] [Abstract][Full Text] [Related]
15. Methanesulfonic Acid-driven New Particle Formation Enhanced by Monoethanolamine: A Computational Study. Shen J; Xie HB; Elm J; Ma F; Chen J; Vehkamäki H Environ Sci Technol; 2019 Dec; 53(24):14387-14397. PubMed ID: 31710478 [TBL] [Abstract][Full Text] [Related]
16. Atmospheric implication of synergy in methanesulfonic acid-base trimers: a theoretical investigation. Chen D; Wang W; Li D; Wang W RSC Adv; 2020 Jan; 10(9):5173-5182. PubMed ID: 35498315 [TBL] [Abstract][Full Text] [Related]
17. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics. Marsalek O; Uhlig F; VandeVondele J; Jungwirth P Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274 [TBL] [Abstract][Full Text] [Related]
18. Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth's Atmosphere. A Theoretical Study. Wang CY; Jiang S; Liu YR; Wen H; Wang ZQ; Han YJ; Huang T; Huang W J Phys Chem A; 2018 Apr; 122(13):3470-3479. PubMed ID: 29547296 [TBL] [Abstract][Full Text] [Related]
19. Implications for new particle formation in air of the use of monoethanolamine in carbon capture and storage. Perraud V; Roundtree K; Morris PM; Smith JN; Finlayson-Pitts BJ Phys Chem Chem Phys; 2024 Mar; 26(11):9005-9020. PubMed ID: 38440810 [TBL] [Abstract][Full Text] [Related]