These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30124027)

  • 1. [Human action and road condition recognition based on the inertial information].
    Wang Y; Chen H; Yin Z; Yu H; Meng Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Aug; 35(4):621-630. PubMed ID: 30124027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A pace recognition method for exoskeleton wearers based on support vector machine-hidden Markov model].
    Hu D; Liu Z; Chen L; Wang Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):84-91. PubMed ID: 35231969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of Upper Limb Action Intention Based on IMU.
    Cui JW; Li ZG; Du H; Yan BY; Lu PD
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower Limb Locomotion Activity Recognition of Healthy Individuals Using Semi-Markov Model and Single Wearable Inertial Sensor.
    Li H; Derrode S; Pieczynski W
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning.
    Zhou B; Wang H; Hu F; Feng N; Xi H; Zhang Z; Tang H
    Comput Methods Programs Biomed; 2020 Sep; 193():105486. PubMed ID: 32402846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking of Gymnast's Limb Movement Trajectory Based on MEMS Inertial Sensor.
    Li P; Zhou J
    Appl Bionics Biomech; 2022; 2022():5292454. PubMed ID: 35528538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Individual Finger Gesture Recognition System Based on Motion-Intent Analysis Using Mechanomyogram Signal.
    Ding H; He Q; Zhou Y; Dan G; Cui S
    Front Neurol; 2017; 8():573. PubMed ID: 29167655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An intelligent model to decode students' behavioral states in physical education using back propagation neural network and Hidden Markov Model.
    Li L
    BMC Psychol; 2024 May; 12(1):249. PubMed ID: 38711093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VR motion sickness recognition by using EEG rhythm energy ratio based on wavelet packet transform.
    Li X; Zhu C; Xu C; Zhu J; Li Y; Wu S
    Comput Methods Programs Biomed; 2020 May; 188():105266. PubMed ID: 31865095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bicycling Phase Recognition for Lower Limb Amputees Using Support Vector Machine Optimized by Particle Swarm Optimization.
    Li X; Liu Z; Gao X; Zhang J
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33203169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upper Limb Position Tracking with a Single Inertial Sensor Using Dead Reckoning Method with Drift Correction Techniques.
    Bai L; Pepper MG; Wang Z; Mulvenna MD; Bond RR; Finlay D; Zheng H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Method for Hand Movement Recognition Based on Wavelet Packet Transform and Principal Component Analysis with Surface Electromyogram.
    Huo Y; Li F; Li Q; He E; Chen J
    Comput Intell Neurosci; 2022; 2022():8125186. PubMed ID: 36397787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion Intent Recognition in Intelligent Lower Limb Prosthesis Using One-Dimensional Dual-Tree Complex Wavelet Transforms.
    Sheng M; Wang WJ; Tong TT; Yang YY; Chen HL; Su BY
    Comput Intell Neurosci; 2021; 2021():5631730. PubMed ID: 34868294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal Road Surface Recognition Based on Smartphone Acceleration Sensor.
    Du R; Qiu G; Gao K; Hu L; Liu L
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31941141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings.
    Liu J; Hu Y; Wu B; Wang Y; Xie F
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28524088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Wavelet Adaptive Cancellation Algorithm Based on Multi-Inertial Sensors for the Reduction of Motion Artifacts in Ambulatory ECGs.
    Xiong F; Chen D; Huang M
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32054066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Method for Autonomous Multi-Motion Modes Recognition and Navigation Optimization for Indoor Pedestrian.
    Wang Z; Xiong Z; Xing L; Ding Y; Sun Y
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational Motion Tracking of Leg Joints for Enhanced Prediction of Walking Tasks.
    Stolyarov R; Burnett G; Herr H
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):763-769. PubMed ID: 28650802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.