These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
987 related articles for article (PubMed ID: 30124471)
41. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Doenst T; Pytel G; Schrepper A; Amorim P; Färber G; Shingu Y; Mohr FW; Schwarzer M Cardiovasc Res; 2010 Jun; 86(3):461-70. PubMed ID: 20035032 [TBL] [Abstract][Full Text] [Related]
42. Mitochondrial dysfunction and mitochondrial therapies in heart failure. Wu C; Zhang Z; Zhang W; Liu X Pharmacol Res; 2022 Jan; 175():106038. PubMed ID: 34929300 [TBL] [Abstract][Full Text] [Related]
43. Normalization of NAD+ Redox Balance as a Therapy for Heart Failure. Lee CF; Chavez JD; Garcia-Menendez L; Choi Y; Roe ND; Chiao YA; Edgar JS; Goo YA; Goodlett DR; Bruce JE; Tian R Circulation; 2016 Sep; 134(12):883-94. PubMed ID: 27489254 [TBL] [Abstract][Full Text] [Related]
44. Metabolic remodelling of the failing heart: beneficial or detrimental? van Bilsen M; van Nieuwenhoven FA; van der Vusse GJ Cardiovasc Res; 2009 Feb; 81(3):420-8. PubMed ID: 18854380 [TBL] [Abstract][Full Text] [Related]
45. Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure. Nickel AG; von Hardenberg A; Hohl M; Löffler JR; Kohlhaas M; Becker J; Reil JC; Kazakov A; Bonnekoh J; Stadelmaier M; Puhl SL; Wagner M; Bogeski I; Cortassa S; Kappl R; Pasieka B; Lafontaine M; Lancaster CR; Blacker TS; Hall AR; Duchen MR; Kästner L; Lipp P; Zeller T; Müller C; Knopp A; Laufs U; Böhm M; Hoth M; Maack C Cell Metab; 2015 Sep; 22(3):472-84. PubMed ID: 26256392 [TBL] [Abstract][Full Text] [Related]
46. Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Nediani C; Raimondi L; Borchi E; Cerbai E Antioxid Redox Signal; 2011 Jan; 14(2):289-331. PubMed ID: 20624031 [TBL] [Abstract][Full Text] [Related]
47. Mitochondrial Dysfunction in Heart Failure With Preserved Ejection Fraction. Kumar AA; Kelly DP; Chirinos JA Circulation; 2019 Mar; 139(11):1435-1450. PubMed ID: 30856000 [TBL] [Abstract][Full Text] [Related]
49. Mitochondria and oxidative stress in heart aging. Martín-Fernández B; Gredilla R Age (Dordr); 2016 Aug; 38(4):225-238. PubMed ID: 27449187 [TBL] [Abstract][Full Text] [Related]
50. Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases. Cheng J; Nanayakkara G; Shao Y; Cueto R; Wang L; Yang WY; Tian Y; Wang H; Yang X Adv Exp Med Biol; 2017; 982():359-370. PubMed ID: 28551798 [TBL] [Abstract][Full Text] [Related]
51. PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Riehle C; Wende AR; Zaha VG; Pires KM; Wayment B; Olsen C; Bugger H; Buchanan J; Wang X; Moreira AB; Doenst T; Medina-Gomez G; Litwin SE; Lelliott CJ; Vidal-Puig A; Abel ED Circ Res; 2011 Sep; 109(7):783-93. PubMed ID: 21799152 [TBL] [Abstract][Full Text] [Related]
52. Preserved Skeletal Muscle Mitochondrial Function, Redox State, Inflammation and Mass in Obese Mice with Chronic Heart Failure. Gortan Cappellari G; Aleksova A; Dal Ferro M; Cannatà A; Semolic A; Zanetti M; Springer J; Anker SD; Giacca M; Sinagra G; Barazzoni R Nutrients; 2020 Nov; 12(11):. PubMed ID: 33158222 [No Abstract] [Full Text] [Related]
53. Anesthetic preconditioning improves adenosine triphosphate synthesis and reduces reactive oxygen species formation in mitochondria after ischemia by a redox dependent mechanism. Novalija E; Kevin LG; Eells JT; Henry MM; Stowe DF Anesthesiology; 2003 May; 98(5):1155-63. PubMed ID: 12717137 [TBL] [Abstract][Full Text] [Related]
54. Improving effect of physical exercise on heart failure: Reducing oxidative stress-induced inflammation by restoring Ca Yuan S; Kuai Z; Zhao F; Xu D; Wu W Mol Cell Biochem; 2024 Oct; ():. PubMed ID: 39365389 [TBL] [Abstract][Full Text] [Related]
55. Impaired mitochondrial energy supply coupled to increased H2O2 emission under energy/redox stress leads to myocardial dysfunction during Type I diabetes. Tocchetti CG; Stanley BA; Sivakumaran V; Bedja D; O'Rourke B; Paolocci N; Cortassa S; Aon MA Clin Sci (Lond); 2015 Oct; 129(7):561-74. PubMed ID: 26186741 [TBL] [Abstract][Full Text] [Related]
56. Myocardial energetics in heart failure. Nickel A; Löffler J; Maack C Basic Res Cardiol; 2013 Jul; 108(4):358. PubMed ID: 23740216 [TBL] [Abstract][Full Text] [Related]
57. Functional Role of Mitochondria in Arrhythmogenesis. Gambardella J; Sorriento D; Ciccarelli M; Del Giudice C; Fiordelisi A; Napolitano L; Trimarco B; Iaccarino G; Santulli G Adv Exp Med Biol; 2017; 982():191-202. PubMed ID: 28551788 [TBL] [Abstract][Full Text] [Related]
58. Deficiency of nuclear receptor interaction protein leads to cardiomyopathy by disrupting sarcomere structure and mitochondrial respiration. Yang KC; Chuang KW; Yen WS; Lin SY; Chen HH; Chang SW; Lin YS; Wu WL; Tsao YP; Chen WP; Chen SL J Mol Cell Cardiol; 2019 Dec; 137():9-24. PubMed ID: 31629737 [TBL] [Abstract][Full Text] [Related]
59. Calcium release microdomains and mitochondria. Kohlhaas M; Maack C Cardiovasc Res; 2013 May; 98(2):259-68. PubMed ID: 23417042 [TBL] [Abstract][Full Text] [Related]
60. Mitochondria in Structural and Functional Cardiac Remodeling. Torrealba N; Aranguiz P; Alonso C; Rothermel BA; Lavandero S Adv Exp Med Biol; 2017; 982():277-306. PubMed ID: 28551793 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]