These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 3012460)

  • 1. Highly selective chemical modification of cruciform loops by diethyl pyrocarbonate.
    Furlong JC; Lilley DM
    Nucleic Acids Res; 1986 May; 14(10):3995-4007. PubMed ID: 3012460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diethyl pyrocarbonate: a chemical probe for DNA cruciforms.
    Scholten PM; Nordheim A
    Nucleic Acids Res; 1986 May; 14(10):3981-93. PubMed ID: 3714469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diethyl pyrocarbonate: a chemical probe for secondary structure in negatively supercoiled DNA.
    Herr W
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):8009-13. PubMed ID: 3865212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of cruciforms in supercoiled DNA: probing the single-stranded character of nucleotide bases with bisulphite.
    Gough GW; Sullivan KM; Lilley DM
    EMBO J; 1986 Jan; 5(1):191-6. PubMed ID: 3007115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The physical chemistry of cruciform structures in supercoiled DNA molecules.
    Lilley DM; Gough GW; Hallam LR; Sullivan KM
    Biochimie; 1985; 67(7-8):697-706. PubMed ID: 3002491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A native cruciform DNA structure probed in bacteria by recombinant T7 endonuclease.
    Panayotatos N; Fontaine A
    J Biol Chem; 1987 Aug; 262(23):11364-8. PubMed ID: 3038915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A new method of studying DNA conformation by chemical modification].
    Mazin AV; Kuz'minov AV; Dshanov GL; Salganik RI
    Bioorg Khim; 1985 Dec; 11(12):1690-2. PubMed ID: 3002395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical reactivity of potassium permanganate and diethyl pyrocarbonate with B DNA: specific reactivity with short A-tracts.
    McCarthy JG; Williams LD; Rich A
    Biochemistry; 1990 Jun; 29(25):6071-81. PubMed ID: 2166574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical probing of conformation in large RNA molecules. Analysis of 16 S ribosomal RNA using diethylpyrocarbonate.
    Van Stolk BJ; Noller HF
    J Mol Biol; 1984 Nov; 180(1):151-77. PubMed ID: 6210372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Localization of melted regions in supercoiled DNA by means of chemical modification].
    Voloshin ON; Liubchenko IuL; Shliakhtenko LS
    Bioorg Khim; 1988 Dec; 14(12):1700-3. PubMed ID: 3251468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of melted regions in supercoiled DNA.
    Voloshin ON; Shlyakhtenko LS; Lyubchenko YuL
    FEBS Lett; 1989 Jan; 243(2):377-80. PubMed ID: 2917657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational flexibility of junctions between contiguous B- and Z-DNAs in supercoiled plasmids.
    Singleton CK; Klysik J; Wells RD
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2447-51. PubMed ID: 6302683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosome "phasing" and cruciform structures in circular supercoiled pBR322 DNA.
    Caffarelli E; Franzini C; Leoni L; Savino M
    Cell Biophys; 1984 Mar; 6(1):23-31. PubMed ID: 6204760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perfect palindromic lac operator DNA sequence exists as a stable cruciform structure in supercoiled DNA in vitro but not in vivo.
    Sinden RR; Broyles SS; Pettijohn DE
    Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1797-801. PubMed ID: 6340109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long range structural communication between sequences in supercoiled DNA. Sequence dependence of contextual influence on cruciform extrusion mechanism.
    Sullivan KM; Murchie AI; Lilley DM
    J Biol Chem; 1988 Sep; 263(26):13074-82. PubMed ID: 2843507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cruciform structures in palindromic DNA are favored by DNA supercoiling.
    Mizuuchi K; Mizuuchi M; Gellert M
    J Mol Biol; 1982 Apr; 156(2):229-43. PubMed ID: 6283098
    [No Abstract]   [Full Text] [Related]  

  • 17. The supercoil-stabilised cruciform of ColE1 is hyper-reactive to osmium tetroxide.
    Lilley DM; Palecek E
    EMBO J; 1984 May; 3(5):1187-92. PubMed ID: 6329743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of superhelical density in vivo from analysis of the level of cruciforms existing in living cells.
    Zheng G; Ussery DW; Sinden RR
    J Mol Biol; 1991 Sep; 221(1):122-9. PubMed ID: 1920400
    [No Abstract]   [Full Text] [Related]  

  • 19. Intramolecular DNA triplexes in supercoiled plasmids. I. Effect of loop size on formation and stability.
    Shimizu M; Hanvey JC; Wells RD
    J Biol Chem; 1989 Apr; 264(10):5944-9. PubMed ID: 2647730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel-stranded DNA under topological stress: rearrangement of (dA)15.(dT)15 to a d(A.A.T)n triplex.
    Klysik J; Rippe K; Jovin TM
    Nucleic Acids Res; 1991 Dec; 19(25):7145-54. PubMed ID: 1766874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.