These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 30124643)
1. Adeno-Associated Virus-Mediated Delivery of CRISPR for Cardiac Gene Editing in Mice. Xu L; Gao Y; Lau YS; Han R J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124643 [TBL] [Abstract][Full Text] [Related]
2. In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice. El Refaey M; Xu L; Gao Y; Canan BD; Adesanya TMA; Warner SC; Akagi K; Symer DE; Mohler PJ; Ma J; Janssen PML; Han R Circ Res; 2017 Sep; 121(8):923-929. PubMed ID: 28790199 [TBL] [Abstract][Full Text] [Related]
3. The gRNA Vector Level Determines the Outcome of Systemic AAV CRISPR Therapy for Duchenne Muscular Dystrophy. Wasala NB; Million ED; Watkins TB; Wasala LP; Han J; Yue Y; Lu B; Chen SJ; Hakim CH; Duan D Hum Gene Ther; 2022 May; 33(9-10):518-528. PubMed ID: 35350865 [TBL] [Abstract][Full Text] [Related]
4. CRISPR-Cas9 Correction of Duchenne Muscular Dystrophy in Mice by a Self-Complementary AAV Delivery System. Zhang Y; Bassel-Duby R; Olson EN Methods Mol Biol; 2023; 2587():411-425. PubMed ID: 36401041 [TBL] [Abstract][Full Text] [Related]
5. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Bengtsson NE; Hall JK; Odom GL; Phelps MP; Andrus CR; Hawkins RD; Hauschka SD; Chamberlain JR; Chamberlain JS Nat Commun; 2017 Feb; 8():14454. PubMed ID: 28195574 [TBL] [Abstract][Full Text] [Related]
6. In vivo genome editing in mouse restores dystrophin expression in Duchenne muscular dystrophy patient muscle fibers. Chen M; Shi H; Gou S; Wang X; Li L; Jin Q; Wu H; Zhang H; Li Y; Wang L; Li H; Lin J; Guo W; Jiang Z; Yang X; Xu A; Zhu Y; Zhang C; Lai L; Li X Genome Med; 2021 Apr; 13(1):57. PubMed ID: 33845891 [TBL] [Abstract][Full Text] [Related]
7. Gene editing of Duchenne muscular dystrophy using biomineralization-based spCas9 variant nanoparticles. Li S; Du M; Deng J; Deng G; Li J; Song Z; Han H Acta Biomater; 2022 Dec; 154():597-607. PubMed ID: 36243370 [TBL] [Abstract][Full Text] [Related]
8. Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing. Min YL; Chemello F; Li H; Rodriguez-Caycedo C; Sanchez-Ortiz E; Mireault AA; McAnally JR; Shelton JM; Zhang Y; Bassel-Duby R; Olson EN Mol Ther; 2020 Sep; 28(9):2044-2055. PubMed ID: 32892813 [TBL] [Abstract][Full Text] [Related]
10. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption. Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809 [TBL] [Abstract][Full Text] [Related]
11. CRISPR Therapeutics for Duchenne Muscular Dystrophy. Erkut E; Yokota T Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163754 [TBL] [Abstract][Full Text] [Related]
12. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. Sui T; Lau YS; Liu D; Liu T; Xu L; Gao Y; Lai L; Li Z; Han R Dis Model Mech; 2018 Jun; 11(6):. PubMed ID: 29871865 [TBL] [Abstract][Full Text] [Related]
13. CRISPR-mediated Genome Editing Restores Dystrophin Expression and Function in mdx Mice. Xu L; Park KH; Zhao L; Xu J; El Refaey M; Gao Y; Zhu H; Ma J; Han R Mol Ther; 2016 Mar; 24(3):564-9. PubMed ID: 26449883 [TBL] [Abstract][Full Text] [Related]
14. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Wang JZ; Wu P; Shi ZM; Xu YL; Liu ZJ Brain Dev; 2017 Aug; 39(7):547-556. PubMed ID: 28390761 [TBL] [Abstract][Full Text] [Related]
15. CRISPR technologies for the treatment of Duchenne muscular dystrophy. Choi E; Koo T Mol Ther; 2021 Nov; 29(11):3179-3191. PubMed ID: 33823301 [TBL] [Abstract][Full Text] [Related]
16. Restoration of dystrophin expression and correction of Duchenne muscular dystrophy by genome editing. Aslesh T; Erkut E; Yokota T Expert Opin Biol Ther; 2021 Aug; 21(8):1049-1061. PubMed ID: 33401973 [No Abstract] [Full Text] [Related]
17. Therapeutic Applications of CRISPR/Cas for Duchenne Muscular Dystrophy. Wong TWY; Cohn RD Curr Gene Ther; 2017; 17(4):301-308. PubMed ID: 29173172 [TBL] [Abstract][Full Text] [Related]
18. A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells. Young CS; Hicks MR; Ermolova NV; Nakano H; Jan M; Younesi S; Karumbayaram S; Kumagai-Cresse C; Wang D; Zack JA; Kohn DB; Nakano A; Nelson SF; Miceli MC; Spencer MJ; Pyle AD Cell Stem Cell; 2016 Apr; 18(4):533-40. PubMed ID: 26877224 [TBL] [Abstract][Full Text] [Related]
19. CRISPR/Cas9-based genome editing for the modification of multiple duplications that cause Duchenne muscular dystrophy. Wang DN; Wang ZQ; Jin M; Lin MT; Wang N Gene Ther; 2022 Dec; 29(12):730-737. PubMed ID: 35534612 [TBL] [Abstract][Full Text] [Related]
20. Questions Answered and Unanswered by the First CRISPR Editing Study in a Canine Model of Duchenne Muscular Dystrophy. Wasala NB; Hakim CH; Chen SJ; Yang NN; Duan D Hum Gene Ther; 2019 May; 30(5):535-543. PubMed ID: 30648435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]