These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

687 related articles for article (PubMed ID: 30124695)

  • 1. Toward sustainable and systematic recycling of spent rechargeable batteries.
    Zhang X; Li L; Fan E; Xue Q; Bian Y; Wu F; Chen R
    Chem Soc Rev; 2018 Oct; 47(19):7239-7302. PubMed ID: 30124695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects.
    Fan E; Li L; Wang Z; Lin J; Huang Y; Yao Y; Chen R; Wu F
    Chem Rev; 2020 Jul; 120(14):7020-7063. PubMed ID: 31990183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards greener and more sustainable batteries for electrical energy storage.
    Larcher D; Tarascon JM
    Nat Chem; 2015 Jan; 7(1):19-29. PubMed ID: 25515886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact on global metal flows arising from the use of portable rechargeable batteries.
    Rydh CJ; Svärd B
    Sci Total Environ; 2003 Jan; 302(1-3):167-84. PubMed ID: 12526907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway decisions for reuse and recycling of retired lithium-ion batteries considering economic and environmental functions.
    Ma R; Tao S; Sun X; Ren Y; Sun C; Ji G; Xu J; Wang X; Zhang X; Wu Q; Zhou G
    Nat Commun; 2024 Sep; 15(1):7641. PubMed ID: 39223130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Sustainable Polymer Materials for Rechargeable Batteries: Utilizing Natural Feedstocks and Recycling/Upcycling of Polymer Waste.
    Jeong D; Kwon DS; Won G; Kim S; Bang J; Shim J
    ChemSusChem; 2024 Nov; 17(22):e202401010. PubMed ID: 38842474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments.
    Mossali E; Picone N; Gentilini L; Rodrìguez O; Pérez JM; Colledani M
    J Environ Manage; 2020 Jun; 264():110500. PubMed ID: 32250918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives.
    Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH
    J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
    Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M
    Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress, Key Issues, and Future Prospects for Li-Ion Battery Recycling.
    Wu X; Ma J; Wang J; Zhang X; Zhou G; Liang Z
    Glob Chall; 2022 Dec; 6(12):2200067. PubMed ID: 36532240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive Technology for Recycling and Regenerating Materials from Spent Lithium Iron Phosphate Battery.
    Lei S; Sun W; Yang Y
    Environ Sci Technol; 2024 Feb; 58(8):3609-3628. PubMed ID: 38329241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Sustainable All Solid-State Li-Metal Batteries: Perspectives on Battery Technology and Recycling Processes.
    Wu X; Ji G; Wang J; Zhou G; Liang Z
    Adv Mater; 2023 Dec; 35(51):e2301540. PubMed ID: 37191036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental Benefit Assessment of Second-Life Use of Electric Vehicle Lithium-Ion Batteries in Multiple Scenarios Considering Performance Degradation and Economic Value.
    Cui J; Tan Q; Liu L; Li J
    Environ Sci Technol; 2023 Jun; 57(23):8559-8567. PubMed ID: 37272409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spent lithium ion battery (LIB) recycle from electric vehicles: A mini-review.
    Wei Q; Wu Y; Li S; Chen R; Ding J; Zhang C
    Sci Total Environ; 2023 Mar; 866():161380. PubMed ID: 36610625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Aluminum-Ion Battery: A Sustainable and Seminal Concept?
    Leisegang T; Meutzner F; Zschornak M; Münchgesang W; Schmid R; Nestler T; Eremin RA; Kabanov AA; Blatov VA; Meyer DC
    Front Chem; 2019; 7():268. PubMed ID: 31119122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives.
    Xiao J; Li J; Xu Z
    Environ Sci Technol; 2020 Jan; 54(1):9-25. PubMed ID: 31849217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.