These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 30125088)
1. Real-Time Monitoring of Fluorescence in Situ Hybridization Kinetics. Ostromohov N; Huber D; Bercovici M; Kaigala GV Anal Chem; 2018 Oct; 90(19):11470-11477. PubMed ID: 30125088 [TBL] [Abstract][Full Text] [Related]
2. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration. Rocha R; Santos RS; Madureira P; Almeida C; Azevedo NF J Biotechnol; 2016 May; 226():1-7. PubMed ID: 27021959 [TBL] [Abstract][Full Text] [Related]
3. Optimization of a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the detection of bacteria and disclosure of a formamide effect. Santos RS; Guimarães N; Madureira P; Azevedo NF J Biotechnol; 2014 Oct; 187():16-24. PubMed ID: 25034435 [TBL] [Abstract][Full Text] [Related]
4. Dextran sulfate provides a quantitative and quick microarray hybridization reaction. Ku WC; Lau WK; Tseng YT; Tzeng CM; Chiu SK Biochem Biophys Res Commun; 2004 Feb; 315(1):30-7. PubMed ID: 15013421 [TBL] [Abstract][Full Text] [Related]
5. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis. Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456 [TBL] [Abstract][Full Text] [Related]
6. Immunoglobulin heavy-chain fluorescence in situ hybridization-chromogenic in situ hybridization DNA probe split signal in the clonality assessment of lymphoproliferative processes on cytological samples. Zeppa P; Sosa Fernandez LV; Cozzolino I; Ronga V; Genesio R; Salatiello M; Picardi M; Malapelle U; Troncone G; Vigliar E Cancer Cytopathol; 2012 Dec; 120(6):390-400. PubMed ID: 22517675 [TBL] [Abstract][Full Text] [Related]
7. Development of thermodynamic models for simulating probe dissociation profiles in fluorescence in situ hybridization. Yilmaz LS; Noguera DR Biotechnol Bioeng; 2007 Feb; 96(2):349-63. PubMed ID: 16878331 [TBL] [Abstract][Full Text] [Related]
8. Micro fluorescence in situ hybridization (μFISH) for spatially multiplexed analysis of a cell monolayer. Huber D; Autebert J; Kaigala GV Biomed Microdevices; 2016 Apr; 18(2):40. PubMed ID: 27138995 [TBL] [Abstract][Full Text] [Related]
9. A rapid FISH technique for quantitative microscopy. Haar FM; Durm M; Aldinger K; Celeda D; Hausmann M; Ludwig H; Cremer C Biotechniques; 1994 Aug; 17(2):346-8, 350-3. PubMed ID: 7980939 [TBL] [Abstract][Full Text] [Related]
10. Fast and non-toxic in situ hybridization without blocking of repetitive sequences. Matthiesen SH; Hansen CM PLoS One; 2012; 7(7):e40675. PubMed ID: 22911704 [TBL] [Abstract][Full Text] [Related]
11. Detection of CCND1 Locus Amplification by Fluorescence In Situ Hybridization. Balázs M; Koroknai V; Szász I; Ecsedi S Methods Mol Biol; 2018; 1726():85-100. PubMed ID: 29468546 [TBL] [Abstract][Full Text] [Related]
13. Reduced formamide content and hybridization temperature results in increased non-radioactive mRNA in situ hybridization signals. Berndt A; Kosmehl H; Celeda D; Katenkamp D Acta Histochem; 1996 Jan; 98(1):79-87. PubMed ID: 9054192 [TBL] [Abstract][Full Text] [Related]
14. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes. Hwang G; Lee H; Lee J Biochem Biophys Res Commun; 2015 Nov; 467(2):328-33. PubMed ID: 26449454 [TBL] [Abstract][Full Text] [Related]
15. Hybridization kinetics of double-stranded DNA probes for rapid molecular analysis. Gidwani V; Riahi R; Zhang DD; Wong PK Analyst; 2009 Aug; 134(8):1675-81. PubMed ID: 20448937 [TBL] [Abstract][Full Text] [Related]
16. Formamide denaturation of double-stranded DNA for fluorescence in situ hybridization (FISH) distorts nanoscale chromatin structure. Shim AR; Frederick J; Pujadas EM; Kuo T; Ye IC; Pritchard JA; Dunton CL; Gonzalez PC; Acosta N; Jain S; Anthony NM; Almassalha LM; Szleifer I; Backman V PLoS One; 2024; 19(5):e0301000. PubMed ID: 38805476 [TBL] [Abstract][Full Text] [Related]
17. Improved DNA-FISH for cytometric detection of Candida spp. Bisha B; Kim HJ; Brehm-Stecher BF J Appl Microbiol; 2011 Apr; 110(4):881-92. PubMed ID: 21205104 [TBL] [Abstract][Full Text] [Related]
18. Quick-FISH: a rapid fluorescence in situ hybridization technique for molecular cytogenetic analysis. Banerjee SK; Weston AP; Persons DL; Campbell DR Biotechniques; 1998 May; 24(5):826-30. PubMed ID: 9591133 [TBL] [Abstract][Full Text] [Related]
19. Oligonucleotide PIK3CA/Chromosome 3 Dual in Situ Hybridization Automated Assay with Improved Signals, One-Hour Hybridization, and No Use of Blocking DNA. Zhang W; Hubbard A; Baca-Parkinson L; Stanislaw S; Vladich F; Robida MD; Grille JG; Maxwell D; Tsao TS; Carroll W; Gardner T; Clements J; Singh S; Tang L J Mol Diagn; 2015 Sep; 17(5):496-504. PubMed ID: 26163898 [TBL] [Abstract][Full Text] [Related]