These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30125092)

  • 1. Colloidal Chemistry in Molten Salts: Synthesis of Luminescent In
    Srivastava V; Kamysbayev V; Hong L; Dunietz E; Klie RF; Talapin DV
    J Am Chem Soc; 2018 Sep; 140(38):12144-12151. PubMed ID: 30125092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Ternary and Quaternary Group III-Arsenide Colloidal Quantum Dots via High-Temperature Cation Exchange in Molten Salts: The Importance of Molten Salt Speciation.
    Ondry JC; Gupta A; Zhou Z; Chang JH; Talapin DV
    ACS Nano; 2024 Jan; 18(1):858-873. PubMed ID: 38108289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition-Defined Optical Properties and the Direct-to-Indirect Transition in Core-Shell In
    Gupta A; Ondry JC; Lin K; Chen Y; Hudson MH; Chen M; Schaller RD; Rossini AJ; Rabani E; Talapin DV
    J Am Chem Soc; 2023 Aug; 145(30):16429-16448. PubMed ID: 37466972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion-Limited Kinetics of Isovalent Cation Exchange in III-V Nanocrystals Dispersed in Molten Salt Reaction Media.
    Gupta A; Ondry JC; Chen M; Hudson MH; Coropceanu I; Sarma NA; Talapin DV
    Nano Lett; 2022 Aug; 22(16):6545-6552. PubMed ID: 35952655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Colloidal Blue-Emitting InP/ZnS Core/Shell Quantum Dots with the Assistance of Copper Cations.
    Huang F; Bi C; Guo R; Zheng C; Ning J; Tian J
    J Phys Chem Lett; 2019 Nov; 10(21):6720-6726. PubMed ID: 31549508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric Metal-Carboxylate Complexes for Synthesis of InGaP Alloyed Quantum Dots with Blue Emission.
    Yoo D; Choi MJ
    ACS Nano; 2024 Jun; 18(24):16051-16058. PubMed ID: 38840340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced thermal stability of InP quantum dots coated with Al-doped ZnS shell.
    Koh S; Lee H; Lee T; Park K; Kim WJ; Lee DC
    J Chem Phys; 2019 Oct; 151(14):144704. PubMed ID: 31615236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beneficial effects of water in the colloidal synthesis of InP/ZnS core-shell quantum dots for optoelectronic applications.
    Ramasamy P; Kim B; Lee MS; Lee JS
    Nanoscale; 2016 Oct; 8(39):17159-17168. PubMed ID: 27540861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Solvent Complex Formation at the Surface of InP Colloidal Quantum Dots.
    Hai Y; Gahlot K; Tanchev M; Mutalik S; Tekelenburg EK; Hong J; Ahmadi M; Piveteau L; Loi MA; Protesescu L
    J Am Chem Soc; 2024 May; 146(18):12808-12818. PubMed ID: 38668701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luminescent Colloidal InSb Quantum Dots from
    Busatto S; Ruiter M; Jastrzebski JTBH; Albrecht W; Pinchetti V; Brovelli S; Bals S; Moret ME; de Mello Donega C
    ACS Nano; 2020 Oct; 14(10):13146-13160. PubMed ID: 32915541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroluminescence from two I-III-VI quantum dots of A-Ga-S (A=Cu, Ag).
    Kim JH; Yoon SY; Kim KH; Lim HB; Kim HJ; Yang H
    Opt Lett; 2018 Nov; 43(21):5287-5290. PubMed ID: 30382989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gallium Sulfide Quantum Dots with Zinc Sulfide and Alumina Shells Showing Efficient Deep Blue Emission.
    Saha A; Yadav R; Aldakov D; Reiss P
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202311317. PubMed ID: 37735098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc Thiolate Enables Bright Cu-Deficient Cu-In-S/ZnS Quantum Dots.
    Hansen EC; Bertram SN; Yoo JJ; Bawendi MG
    Small; 2019 Jul; 15(27):e1901462. PubMed ID: 31115971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of blue emitting InP/ZnS quantum dots through control of competition between etching and growth.
    Lim K; Jang HS; Woo K
    Nanotechnology; 2012 Dec; 23(48):485609. PubMed ID: 23138715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal InSb Quantum Dots for 1500 nm SWIR Photodetector with Antioxidation of Surface.
    Seo H; Eun HJ; Lee AY; Lee HK; Kim JH; Kim SW
    Adv Sci (Weinh); 2024 Jan; 11(4):e2306439. PubMed ID: 38036427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. InP Quantum Dots: Synthesis and Lighting Applications.
    Chen B; Li D; Wang F
    Small; 2020 Aug; 16(32):e2002454. PubMed ID: 32613755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ga for Zn Cation Exchange Allows for Highly Luminescent and Photostable InZnP-Based Quantum Dots.
    Pietra F; Kirkwood N; De Trizio L; Hoekstra AW; Kleibergen L; Renaud N; Koole R; Baesjou P; Manna L; Houtepen AJ
    Chem Mater; 2017 Jun; 29(12):5192-5199. PubMed ID: 28706347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence.
    Li Y; Hou X; Dai X; Yao Z; Lv L; Jin Y; Peng X
    J Am Chem Soc; 2019 Apr; 141(16):6448-6452. PubMed ID: 30964282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS
    Xia C; Meeldijk JD; Gerritsen HC; de Mello Donega C
    Chem Mater; 2017 Jun; 29(11):4940-4951. PubMed ID: 28638177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ag
    Saha A; Konstantatos G
    J Mater Chem C Mater; 2021 Apr; 9(17):5682-5688. PubMed ID: 33996096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.