These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30125106)

  • 1. Controlling Ca
    Nørager NG; Poulsen MH; Strømgaard K
    J Med Chem; 2018 Sep; 61(17):8048-8053. PubMed ID: 30125106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-phase synthesis of polyamine toxin analogues: potent and selective antagonists of Ca2+-permeable AMPA receptors.
    Kromann H; Krikstolaityte S; Andersen AJ; Andersen K; Krogsgaard-Larsen P; Jaroszewski JW; Egebjerg J; Strømgaard K
    J Med Chem; 2002 Dec; 45(26):5745-54. PubMed ID: 12477358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anthraquinone polyamines: novel channel blockers to study N-methyl-D-aspartate receptors.
    Kashiwagi K; Tanaka I; Tamura M; Sugiyama H; Okawara T; Otsuka M; Sabado TN; Williams K; Igarashi K
    J Pharmacol Exp Ther; 2004 Jun; 309(3):884-93. PubMed ID: 14764657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of the philanthotoxin-343 polyamine moiety results in different structure-activity profiles at muscle nicotinic ACh, NMDA and AMPA receptors.
    Mellor IR; Brier TJ; Pluteanu F; Strømgaard K; Saghyan A; Eldursi N; Brierley MJ; Andersen K; Jaroszewski JW; Krogsgaard-Larsen P; Usherwood PN
    Neuropharmacology; 2003 Jan; 44(1):70-80. PubMed ID: 12559123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncompetitive antagonism of AMPA receptors: Mechanistic insights from studies of polyamine toxin derivatives.
    Andersen TF; Tikhonov DB; Bølcho U; Bolshakov K; Nelson JK; Pluteanu F; Mellor IR; Egebjerg J; Strømgaard K
    J Med Chem; 2006 Sep; 49(18):5414-23. PubMed ID: 16942015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of conformational constraints in the polyamine moiety of philanthotoxins on AMPAR inhibition.
    Franzyk H; Grzeskowiak JW; Tikhonov DB; Jaroszewski JW; Mellor IR
    ChemMedChem; 2014 Aug; 9(8):1725-31. PubMed ID: 25044789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-activity relationship studies of N-methylated and N-hydroxylated spider polyamine toxins as inhibitors of ionotropic glutamate receptors.
    Nørager NG; Poulsen MH; Jensen AG; Jeppesen NS; Kristensen AS; Strømgaard K
    J Med Chem; 2014 Jun; 57(11):4940-9. PubMed ID: 24824658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-classical mechanism of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor channel block by fluoxetine.
    Barygin OI; Komarova MS; Tikhonova TB; Tikhonov DB
    Eur J Neurosci; 2015 Apr; 41(7):869-77. PubMed ID: 25557871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular polyamines mediate inward rectification of Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors.
    Donevan SD; Rogawski MA
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9298-302. PubMed ID: 7568121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of GluR2 expression in AMPA-induced toxicity in cultured murine cerebral cortical neurons.
    Jensen JB; Lund TM; Timmermann DB; Schousboe A; Pickering DS
    J Neurosci Res; 2001 Aug; 65(3):267-77. PubMed ID: 11494361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation.
    Tapken D; Hollmann M
    J Mol Biol; 2008 Oct; 383(1):36-48. PubMed ID: 18625242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vitro characterization of YM872, a selective, potent and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist.
    Kohara A; Okada M; Tsutsumi R; Ohno K; Takahashi M; Shimizu-Sasamata M; Shishikura J; Inami H; Sakamoto S; Yamaguchi T
    J Pharm Pharmacol; 1998 Jul; 50(7):795-801. PubMed ID: 9720630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins.
    Washburn MS; Dingledine R
    J Pharmacol Exp Ther; 1996 Aug; 278(2):669-78. PubMed ID: 8768718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of diaminobutane derivatives as Ca(2+)-permeable AMPA receptor antagonists.
    Yoneda Y; Mimura T; Kawagoe K; Yasukouchi T; Tatematu T; Ito M; Saito M; Sugimura M; Kito F; Kawajiri S
    Bioorg Med Chem; 2002 May; 10(5):1347-59. PubMed ID: 11886798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of 1,4,7,8,9,10-hexahydro-9-methyl-6-nitropyrido[3,4-f]- quinoxaline-2,3-dione and related quinoxalinediones: characterization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (and N-methyl-D-aspartate) receptor and anticonvulsant activity.
    Bigge CF; Malone TC; Boxer PA; Nelson CB; Ortwine DF; Schelkun RM; Retz DM; Lescosky LJ; Borosky SA; Vartanian MG
    J Med Chem; 1995 Sep; 38(19):3720-40. PubMed ID: 7562904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overactivation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate but not kainate receptors inhibits phosphatidylcholine synthesis before excitotoxic neuronal death.
    Gasull T; DeGregorio-Rocasolano N; Trullas R
    J Neurochem; 2001 Apr; 77(1):13-22. PubMed ID: 11279257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic contribution of Ca2+-permeable and Ca2+-impermeable AMPA receptors on isolated carp retinal horizontal cells and their modulation by Zn2+.
    Sun Y; Jiang XD; Liu X; Gong HQ; Liang PJ
    Brain Res; 2010 Mar; 1317():60-8. PubMed ID: 20045401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4-hydroxy-1,2,5-oxadiazol-3-yl moiety as bioisoster of the carboxy function. Synthesis, ionization constants, and molecular pharmacological characterization at ionotropic glutamate receptors of compounds related to glutamate and its homologues.
    Lolli ML; Giordano C; Pickering DS; Rolando B; Hansen KB; Foti A; Contreras-Sanz A; Amir A; Fruttero R; Gasco A; Nielsen B; Johansen TN
    J Med Chem; 2010 May; 53(10):4110-8. PubMed ID: 20408529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-dependent downregulation of M-Type (Kv7) K⁺ channels surface expression requires the activation of iGluRs/Ca²⁺/PKC signaling pathway in hippocampal neuron.
    Li C; Lu Q; Huang P; Fu T; Li C; Guo L; Xu X
    Neuropharmacology; 2015 Aug; 95():154-67. PubMed ID: 25796298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinazolone-alkyl-carboxylic acid derivatives inhibit transmembrane Ca(2+) ion flux to (+)-(S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid.
    Szárics E; Nyikos L; Barabás P; Kovács I; Skuban N; Temesváriné-Major E; Egyed O; Nagy PI; Kökösi J; Takács-Novák K; Kardos J
    Mol Pharmacol; 2001 Apr; 59(4):920-8. PubMed ID: 11259638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.