These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 30125397)

  • 1. Constructing Three-Dimensional Architectures to Design Advanced Copper-Based Current Collector Materials for Alkali Metal Batteries: From Nanoscale to Microscale.
    Kong C; Wang F; Liu Y; Liu Z; Liu J; Feng K; Pei Y; Wu Y; Wang G
    Molecules; 2024 Aug; 29(15):. PubMed ID: 39125073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in anode current collectors with a lithiophilic gradient for lithium metal batteries.
    Gao C; Kang J; Zhang Y; He C; Shi C; Chen B; Ma L; Liu E; Sha J; Zhou F; Zhao N
    Chem Commun (Camb); 2024 Aug; 60(69):9130-9148. PubMed ID: 39086195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying Current Collectors that Enable Light-Battery Interactions.
    Pujari A; Kim BM; Greenham NC; De Volder M
    Small Methods; 2024 May; ():e2301572. PubMed ID: 38695753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. π-π Stacked Nigrosine@Carbon Nanotube Nanocomposite as an All-in-One Additive for High Energy Flexible Batteries.
    Xing Z; Zou S; Ma C; Qiao Q; Cai X; Yue K; Yue J; Zhou C; Zheng J; Wang Y; Luo J; Yuan H; Nai J; Tao X; Liu Y
    ACS Nano; 2024 Jul; 18(27):17950-17957. PubMed ID: 38916519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing Lithium-Free Anode/Separator Interface via 3D Carbon Fabric Scaffold for Ultrasafe Lithium Metal Batteries.
    Li D; Yang S; Zheng Z; Lai WY
    Research (Wash D C); 2023; 6():0267. PubMed ID: 38434242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous Metal Current Collectors for Alkali Metal Batteries.
    Chen J; Wang Y; Li S; Chen H; Qiao X; Zhao J; Ma Y; Alshareef HN
    Adv Sci (Weinh); 2022 Nov; 10(1):e2205695. PubMed ID: 36437052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Vertically Aligned Electrode-Inspired High-Capacity Lithium Batteries.
    Mu Y; Chen Y; Wu B; Zhang Q; Lin M; Zeng L
    Adv Sci (Weinh); 2022 Oct; 9(30):e2203321. PubMed ID: 35999430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries.
    Kim JH; Kim JM; Cho SK; Kim NY; Lee SY
    Nat Commun; 2022 May; 13(1):2541. PubMed ID: 35534482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-based three-dimensional manufacturing technologies for rechargeable batteries.
    Moldovan D; Choi J; Choo Y; Kim WS; Hwa Y
    Nano Converg; 2021 Aug; 8(1):23. PubMed ID: 34370114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers.
    Fang Y; Zhang SL; Wu ZP; Luan D; Lou XWD
    Sci Adv; 2021 May; 7(21):. PubMed ID: 34020959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances of Carbon-Based Materials for Lithium Metal Anodes.
    Tang K; Xiao J; Li X; Wang D; Long M; Chen J; Gao H; Chen W; Liu C; Liu H
    Front Chem; 2020; 8():595972. PubMed ID: 33195103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architectured ZnO-Cu particles for facile manufacturing of integrated Li-ion electrodes.
    Bargardi FL; Billaud J; Villevieille C; Bouville F; Studart AR
    Sci Rep; 2020 Jul; 10(1):12401. PubMed ID: 32709932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultrastable lithium metal anode enabled by designed metal fluoride spansules.
    Yuan H; Nai J; Tian H; Ju Z; Zhang W; Liu Y; Tao X; Lou XWD
    Sci Adv; 2020 Mar; 6(10):eaaz3112. PubMed ID: 32181364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Sponge-Driven Elastic Interface for Lithium Metal Anodes.
    Yu H; Xie J; Shu N; Pan F; Ye J; Wang X; Yuan H; Zhu Y
    Research (Wash D C); 2019; 2019():9129457. PubMed ID: 31922142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced 3D Current Collectors for Lithium-Based Batteries.
    Jin S; Jiang Y; Ji H; Yu Y
    Adv Mater; 2018 Nov; 30(48):e1802014. PubMed ID: 30125397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalently Connected Carbon Nanostructures for Current Collectors in Both the Cathode and Anode of Li-S Batteries.
    Jin S; Xin S; Wang L; Du Z; Cao L; Chen J; Kong X; Gong M; Lu J; Zhu Y; Ji H; Ruoff RS
    Adv Mater; 2016 Nov; 28(41):9094-9102. PubMed ID: 27604953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Design of 3D Current Collectors for Lithium Metal Anodes: A Review.
    Yang GD; Liu Y; Ji X; Zhou SM; Wang Z; Sun HZ
    Chemistry; 2024 Apr; 30(21):e202304152. PubMed ID: 38311589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes.
    Yang CP; Yin YX; Zhang SF; Li NW; Guo YG
    Nat Commun; 2015 Aug; 6():8058. PubMed ID: 26299379
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.