These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3012541)

  • 21. A monoclonal antibody inhibiting human neutrophil chemotaxis and degranulation.
    Cotter TG; Spears P; Henson PM
    J Immunol; 1981 Oct; 127(4):1355-60. PubMed ID: 6268706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible activation of the neutrophil superoxide generating system by hexachlorocyclohexane: correlation with effects on a subcellular superoxide-generating fraction.
    English D; Schell M; Siakotos A; Gabig TG
    J Immunol; 1986 Jul; 137(1):283-90. PubMed ID: 2423606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exudation primes human and guinea pig neutrophils for subsequent responsiveness to the chemotactic peptide N-formylmethionylleucylphenylalanine and increases complement component C3bi receptor expression.
    Zimmerli W; Seligmann B; Gallin JI
    J Clin Invest; 1986 Mar; 77(3):925-33. PubMed ID: 3005369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunological studies on the respiratory burst oxidase of pig blood neutrophils.
    Fukuhara Y; Ise Y; Kakinuma K
    FEBS Lett; 1988 Feb; 229(1):150-6. PubMed ID: 2831084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular organelle motility and membrane fusion processes in human neutrophils upon cell activation.
    Mollinedo F; Schneider DL
    FEBS Lett; 1987 Jun; 217(2):158-62. PubMed ID: 3036578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antineutrophil monoclonal antibody (1F12) alters superoxide anion release by neutrophils and Kupffer cells.
    Bautista AP; Spolarics Z; Jaeschke H; Smith CW; Spitzer JJ
    J Leukoc Biol; 1994 Mar; 55(3):328-35. PubMed ID: 8120449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Depolarization blunts the oxidative burst of human neutrophils. Parallel effects of monoclonal antibodies, depolarizing buffers, and glycolytic inhibitors.
    Martin MA; Nauseef WM; Clark RA
    J Immunol; 1988 Jun; 140(11):3928-35. PubMed ID: 2836507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The enzyme responsible for the respiratory burst in elicited guinea pig peritoneal macrophages.
    Berton G; Bellavite P; Dri P; de Togni P; Rossi F
    J Pathol; 1982 Apr; 136(4):273-90. PubMed ID: 7077433
    [No Abstract]   [Full Text] [Related]  

  • 29. A monoclonal antibody to CD11c antigen inhibits the production of superoxide anion induced by concanavalin A in PMA-differentiated U-937 cells.
    Cabañas C; Lacal P; Mollinedo F; López-Rivas A; Sánchez-Madrid F; Bernabeu C
    Immunol Lett; 1989 Feb; 20(3):193-7. PubMed ID: 2541080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibitory effect of porcine surfactant on the respiratory burst oxidase in human neutrophils. Attenuation of p47phox and p67phox membrane translocation as the mechanism.
    Chao W; Spragg RG; Smith RM
    J Clin Invest; 1995 Dec; 96(6):2654-60. PubMed ID: 8675631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies of cytochrome b-245 translocation in the PMA stimulation of the human neutrophil NADPH-oxidase.
    Higson FK; Durbin L; Pavlotsky N; Tauber AI
    J Immunol; 1985 Jul; 135(1):519-24. PubMed ID: 2987348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphatidylinositol-linked FcRIII mediates exocytosis of neutrophil granule proteins, but does not mediate initiation of the respiratory burst.
    Huizinga TW; Dolman KM; van der Linden NJ; Kleijer M; Nuijens JH; von dem Borne AE; Roos D
    J Immunol; 1990 Feb; 144(4):1432-7. PubMed ID: 2137491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative aspects of oxidative metabolism of neutrophils from human blood and guinea pig peritonea: magnitude of the respiratory burst, dependence upon stimulating agents, and localization of the oxidases.
    Badwey JA; Curnutte JT; Robinson JM; Lazdins JK; Briggs RT; Karnovsky MJ; Karnovsky ML
    J Cell Physiol; 1980 Dec; 105(3):541-5. PubMed ID: 6257739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Possible involvement of a 95-kDa protein phosphorylation in phorbol 12-myristate 13-acetate-induced suppression of zymosan phagocytosis in guinea pig macrophages.
    Hazeki K; Tamoto K; Tada M; Mori Y
    Arch Biochem Biophys; 1989 May; 270(2):551-9. PubMed ID: 2705780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on the NADPH oxidase of phagocytes. Production of a monoclonal antibody which blocks the enzymatic activity of pig neutrophil NADPH oxidase.
    Berton G; Dusi S; Serra MC; Bellavite P; Rossi F
    J Biol Chem; 1989 Apr; 264(10):5564-8. PubMed ID: 2925620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A monoclonal antibody against peripheral benzodiazepine receptor activities the human neutrophil NADPH-oxidase.
    Zavala F; Masson A; Brys L; de Baetselier P; Descamps-Latscha B
    Biochem Biophys Res Commun; 1991 May; 176(3):1577-83. PubMed ID: 1645547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyperphosphorylated p47-phox lost the ability to activate NADPH oxidase in guinea pig neutrophils.
    Yamaguchi M; Saeki S; Yamane H; Okamura N; Ishibashi S
    Biochem Biophys Res Commun; 1995 Nov; 216(1):203-8. PubMed ID: 7488090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of the expression of a rat neutrophil-specific cell surface antigen by activation with phorbol myristate acetate and concanavalin A.
    Gotoh S; Itoh M; Fujii Y; Arai S; Sendo F
    J Immunol; 1986 Jul; 137(2):643-50. PubMed ID: 2424975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of recombinant human granulocyte/macrophage colony-stimulating factor on neutrophil superoxide production.
    Schultz RM
    Immunopharmacol Immunotoxicol; 1991; 13(1-2):183-98. PubMed ID: 1663143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impaired NADPH oxidase activity in Rac2-deficient murine neutrophils does not result from defective translocation of p47phox and p67phox and can be rescued by exogenous arachidonic acid.
    Kim C; Dinauer MC
    J Leukoc Biol; 2006 Jan; 79(1):223-34. PubMed ID: 16275890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.