These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30125711)

  • 1. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images.
    Li H; Jiang G; Zhang J; Wang R; Wang Z; Zheng WS; Menze B
    Neuroimage; 2018 Dec; 183():650-665. PubMed ID: 30125711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI.
    Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I
    Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M;
    Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.
    Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T;
    Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge.
    Kuijf HJ; Biesbroek JM; De Bresser J; Heinen R; Andermatt S; Bento M; Berseth M; Belyaev M; Cardoso MJ; Casamitjana A; Collins DL; Dadar M; Georgiou A; Ghafoorian M; Jin D; Khademi A; Knight J; Li H; Llado X; Luna M; Mahmood Q; McKinley R; Mehrtash A; Ourselin S; Park BY; Park H; Park SH; Pezold S; Puybareau E; Rittner L; Sudre CH; Valverde S; Vilaplana V; Wiest R; Xu Y; Xu Z; Zeng G; Zhang J; Zheng G; Chen C; van der Flier W; Barkhof F; Viergever MA; Biessels GJ
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2556-2568. PubMed ID: 30908194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. End-to-end volumetric segmentation of white matter hyperintensities using deep learning.
    Farkhani S; Demnitz N; Boraxbekk CJ; Lundell H; Siebner HR; Petersen ET; Madsen KH
    Comput Methods Programs Biomed; 2024 Mar; 245():108008. PubMed ID: 38290291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images.
    Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T
    Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UBO Detector - A cluster-based, fully automated pipeline for extracting white matter hyperintensities.
    Jiang J; Liu T; Zhu W; Koncz R; Liu H; Lee T; Sachdev PS; Wen W
    Neuroimage; 2018 Jul; 174():539-549. PubMed ID: 29578029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.
    Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A
    Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator.
    Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S
    Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic segmentation of white matter hyperintensities in T2-FLAIR with AQUA: A comparative validation study against conventional methods.
    Lee S; Rieu Z; Kim RE; Lee M; Yen K; Yong J; Kim D
    Brain Res Bull; 2023 Dec; 205():110825. PubMed ID: 38000477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.
    Valverde S; Cabezas M; Roura E; González-Villà S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Oliver A; Lladó X
    Neuroimage; 2017 Jul; 155():159-168. PubMed ID: 28435096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities.
    Ling Y; Jouvent E; Cousyn L; Chabriat H; De Guio F
    Neuroinformatics; 2018 Apr; 16(2):269-281. PubMed ID: 29594711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting.
    Manjón JV; Coupé P; Raniga P; Xia Y; Desmond P; Fripp J; Salvado O
    Comput Med Imaging Graph; 2018 Nov; 69():43-51. PubMed ID: 30172092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images.
    Sundaresan V; Zamboni G; Rothwell PM; Jenkinson M; Griffanti L
    Med Image Anal; 2021 Oct; 73():102184. PubMed ID: 34325148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-atlas based detection and localization (MADL) for location-dependent quantification of white matter hyperintensities.
    Wu D; Albert M; Soldan A; Pettigrew C; Oishi K; Tomogane Y; Ye C; Ma T; Miller MI; Mori S
    Neuroimage Clin; 2019; 22():101772. PubMed ID: 30927606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semisupervised white matter hyperintensities segmentation on MRI.
    Huang F; Xia P; Vardhanabhuti V; Hui SK; Lau KK; Ka-Fung Mak H; Cao P
    Hum Brain Mapp; 2023 Mar; 44(4):1344-1358. PubMed ID: 36214210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Bayesian networks for uncertainty estimation and adversarial resistance of white matter hyperintensity segmentation.
    Mojiri Forooshani P; Biparva M; Ntiri EE; Ramirez J; Boone L; Holmes MF; Adamo S; Gao F; Ozzoude M; Scott CJM; Dowlatshahi D; Lawrence-Dewar JM; Kwan D; Lang AE; Marcotte K; Leonard C; Rochon E; Heyn C; Bartha R; Strother S; Tardif JC; Symons S; Masellis M; Swartz RH; Moody A; Black SE; Goubran M
    Hum Brain Mapp; 2022 May; 43(7):2089-2108. PubMed ID: 35088930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voxel-Wise Logistic Regression and Leave-One-Source-Out Cross Validation for white matter hyperintensity segmentation.
    Knight J; Taylor GW; Khademi A
    Magn Reson Imaging; 2018 Dec; 54():119-136. PubMed ID: 29932970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Stacked Generalization of 3D Orthogonal Deep Learning Convolutional Neural Networks for Improved Detection of White Matter Hyperintensities in 3D FLAIR Images.
    Umapathy L; Perez-Carrillo GG; Keerthivasan MB; Rosado-Toro JA; Altbach MI; Winegar B; Weinkauf C; Bilgin A;
    AJNR Am J Neuroradiol; 2021 Apr; 42(4):639-647. PubMed ID: 33574101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.