These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30125947)

  • 1. Bayesian negative binomial mixture regression models for the analysis of sequence count and methylation data.
    Li Q; Cassese A; Guindani M; Vannucci M
    Biometrics; 2019 Mar; 75(1):183-192. PubMed ID: 30125947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A sparse negative binomial mixture model for clustering RNA-seq count data.
    Li Y; Rahman T; Ma T; Tang L; Tseng GC
    Biostatistics; 2022 Dec; 24(1):68-84. PubMed ID: 34363675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A variational Bayes beta mixture model for feature selection in DNA methylation studies.
    Ma Z; Teschendorff AE
    J Bioinform Comput Biol; 2013 Aug; 11(4):1350005. PubMed ID: 23859269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miRNA-target gene regulatory networks: A Bayesian integrative approach to biomarker selection with application to kidney cancer.
    Chekouo T; Stingo FC; Doecke JD; Do KA
    Biometrics; 2015 Jun; 71(2):428-38. PubMed ID: 25639276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data.
    Stingo FC; Vannucci M
    Bioinformatics; 2011 Feb; 27(4):495-501. PubMed ID: 21159623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QNB: differential RNA methylation analysis for count-based small-sample sequencing data with a quad-negative binomial model.
    Liu L; Zhang SW; Huang Y; Meng J
    BMC Bioinformatics; 2017 Aug; 18(1):387. PubMed ID: 28859631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DM-BLD: differential methylation detection using a hierarchical Bayesian model exploiting local dependency.
    Wang X; Gu J; Hilakivi-Clarke L; Clarke R; Xuan J
    Bioinformatics; 2017 Jan; 33(2):161-168. PubMed ID: 27616707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bivariate zero-inflated regression for count data: a Bayesian approach with application to plant counts.
    Majumdar A; Gries C
    Int J Biostat; 2010; 6(1):Article 27. PubMed ID: 21969981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate Bayesian variable selection exploiting dependence structure among outcomes: Application to air pollution effects on DNA methylation.
    Lee KH; Tadesse MG; Baccarelli AA; Schwartz J; Coull BA
    Biometrics; 2017 Mar; 73(1):232-241. PubMed ID: 27377873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NetMIM: network-based multi-omics integration with block missingness for biomarker selection and disease outcome prediction.
    Zhu B; Zhang Z; Leung SY; Fan X
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39288230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NBLDA: negative binomial linear discriminant analysis for RNA-Seq data.
    Dong K; Zhao H; Tong T; Wan X
    BMC Bioinformatics; 2016 Sep; 17(1):369. PubMed ID: 27623864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bias properties of Bayesian statistics in finite mixture of negative binomial regression models in crash data analysis.
    Park BJ; Lord D; Hart JD
    Accid Anal Prev; 2010 Mar; 42(2):741-9. PubMed ID: 20159102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating genetic networks into case-control association studies with high-dimensional DNA methylation data.
    Kim K; Sun H
    BMC Bioinformatics; 2019 Oct; 20(1):510. PubMed ID: 31640538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative pathway-based survival prediction utilizing the interaction between gene expression and DNA methylation in breast cancer.
    Kim SY; Kim TR; Jeong HH; Sohn KA
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):68. PubMed ID: 30255812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data.
    Wu H; Wang C; Wu Z
    Biostatistics; 2013 Apr; 14(2):232-43. PubMed ID: 23001152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.
    Park ES; Symanski E; Han D; Spiegelman C
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Meta-analysis of the Italian studies on short-term effects of air pollution].
    Biggeri A; Bellini P; Terracini B;
    Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian framework for pathway-guided identification of cancer subgroups by integrating multiple types of genomic data.
    Sun Z; Chung D; Neelon B; Millar-Wilson A; Ethier SP; Xiao F; Zheng Y; Wallace K; Hardiman G
    Stat Med; 2023 Dec; 42(28):5266-5284. PubMed ID: 37715500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An interpretable Bayesian clustering approach with feature selection for analyzing spatially resolved transcriptomics data.
    Li H; Zhu B; Jiang X; Guo L; Xie Y; Xu L; Li Q
    Biometrics; 2024 Jul; 80(3):. PubMed ID: 39073775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.