BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30125975)

  • 1. Identification of synthetic lethality based on a functional network by using machine learning algorithms.
    Li J; Lu L; Zhang YH; Liu M; Chen L; Huang T; Cai YD
    J Cell Biochem; 2019 Jan; 120(1):405-416. PubMed ID: 30125975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic Lethality and Cancer - Penetrance as the Major Barrier.
    Ryan CJ; Bajrami I; Lord CJ
    Trends Cancer; 2018 Oct; 4(10):671-683. PubMed ID: 30292351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying synthetic lethal targets using CRISPR/Cas9 system.
    Dhanjal JK; Radhakrishnan N; Sundar D
    Methods; 2017 Dec; 131():66-73. PubMed ID: 28710008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SL
    Liu Y; Wu M; Liu C; Li XL; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):748-757. PubMed ID: 30969932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive prediction of robust synthetic lethality between paralog pairs in cancer cell lines.
    De Kegel B; Quinn N; Thompson NA; Adams DJ; Ryan CJ
    Cell Syst; 2021 Dec; 12(12):1144-1159.e6. PubMed ID: 34529928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in-silico approach to predict and exploit synthetic lethality in cancer metabolism.
    Apaolaza I; San José-Eneriz E; Tobalina L; Miranda E; Garate L; Agirre X; Prósper F; Planes FJ
    Nat Commun; 2017 Sep; 8(1):459. PubMed ID: 28878380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic lethality as an engine for cancer drug target discovery.
    Huang A; Garraway LA; Ashworth A; Weber B
    Nat Rev Drug Discov; 2020 Jan; 19(1):23-38. PubMed ID: 31712683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the functional alteration signatures across different cancer types with support vector machine and feature analysis.
    Wang S; Cai Y
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2218-2227. PubMed ID: 29277326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality.
    Benfatto S; Serçin Ö; Dejure FR; Abdollahi A; Zenke FT; Mardin BR
    Mol Cancer; 2021 Aug; 20(1):111. PubMed ID: 34454516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in synthetic lethality for cancer therapy: cellular mechanism and clinical translation.
    Topatana W; Juengpanich S; Li S; Cao J; Hu J; Lee J; Suliyanto K; Ma D; Zhang B; Chen M; Cai X
    J Hematol Oncol; 2020 Sep; 13(1):118. PubMed ID: 32883316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of Gene Ontology terms and KEGG pathways for analysis and prediction of oncogenes.
    Xing Z; Chu C; Chen L; Kong X
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt B):2725-34. PubMed ID: 26801878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CSSLdb: Discovery of cancer-specific synthetic lethal interactions based on machine learning and statistic inference.
    Dou Y; Ren Y; Zhao X; Jin J; Xiong S; Luo L; Xu X; Yang X; Yu J; Guo L; Liang T
    Comput Biol Med; 2024 Mar; 170():108066. PubMed ID: 38310806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the landscape of synthetic lethal interactions in liver cancer.
    Yang C; Guo Y; Qian R; Huang Y; Zhang L; Wang J; Huang X; Liu Z; Qin W; Wang C; Chen H; Ma X; Zhang D
    Theranostics; 2021; 11(18):9038-9053. PubMed ID: 34522226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discriminating cirRNAs from other lncRNAs using a hierarchical extreme learning machine (H-ELM) algorithm with feature selection.
    Chen L; Zhang YH; Huang G; Pan X; Wang S; Huang T; Cai YD
    Mol Genet Genomics; 2018 Feb; 293(1):137-149. PubMed ID: 28913654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational methods, databases and tools for synthetic lethality prediction.
    Wang J; Zhang Q; Han J; Zhao Y; Zhao C; Yan B; Dai C; Wu L; Wen Y; Zhang Y; Leng D; Wang Z; Yang X; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current views on inducing synthetic lethal RNAi responses in the treatment of cancer.
    Kacsinta AD; Dowdy SF
    Expert Opin Biol Ther; 2016; 16(2):161-72. PubMed ID: 26630128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting synthetic lethal interactions using conserved patterns in protein interaction networks.
    Benstead-Hume G; Chen X; Hopkins SR; Lane KA; Downs JA; Pearl FMG
    PLoS Comput Biol; 2019 Apr; 15(4):e1006888. PubMed ID: 30995217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise Characterization of Genetic Interactions in Cancer via Molecular Network Refining Processes.
    Jung J; Hwang Y; Ahn H; Lee S; Yoo S
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of infectious disease-associated host genes using machine learning techniques.
    Barman RK; Mukhopadhyay A; Maulik U; Das S
    BMC Bioinformatics; 2019 Dec; 20(1):736. PubMed ID: 31881961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic Lethality-based Identification of Targets for Anticancer Drugs in the Human Signaling Network.
    Liu L; Chen X; Hu C; Zhang D; Shao Z; Jin Q; Yang J; Xie H; Liu B; Hu M; Ke K
    Sci Rep; 2018 May; 8(1):8440. PubMed ID: 29855504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.