BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30126020)

  • 21. Mechanistic approach to understanding the toxicity of the azole fungicide triadimefon to a nontarget aquatic insect and implications for exposure assessment.
    Kenneke JF; Mazur CS; Kellock KA; Overmyer JP
    Environ Sci Technol; 2009 Jul; 43(14):5507-13. PubMed ID: 19708389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and application of a physiologically based pharmacokinetic model for triadimefon and its metabolite triadimenol in rats and humans.
    Crowell SR; Henderson WM; Kenneke JF; Fisher JW
    Toxicol Lett; 2011 Aug; 205(2):154-62. PubMed ID: 21641977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Triadimefon and triadimenol: effects on monoamine uptake and release.
    Walker QD; Mailman RB
    Toxicol Appl Pharmacol; 1996 Aug; 139(2):227-33. PubMed ID: 8806838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stereoselective transformation of triadimefon to metabolite triadimenol in wheat and soil under field conditions.
    Liang H; Li L; Qiu J; Li W; Yang S; Zhou Z; Qiu L
    J Hazard Mater; 2013 Sep; 260():929-36. PubMed ID: 23876258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of triadimefon and its metabolite on acute toxicity and chronic effects during the early development of Rana nigromaculata tadpoles.
    Zhang W; Lu Y; Huang L; Cheng C; Di S; Chen L; Zhou Z; Diao J
    Ecotoxicol Environ Saf; 2018 Jul; 156():247-254. PubMed ID: 29554609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparing the effect of triadimefon and its metabolite on male and female Xenopus laevis: Obstructed growth and gonad morphology.
    Zhang W; Deng Y; Chen L; Zhang L; Wang Z; Liu R; Zhou Z; Diao J
    Chemosphere; 2020 Nov; 259():127415. PubMed ID: 32603964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of triadimefon and its metabolite on adult amphibians Xenopus laevis.
    Zhang W; Deng Y; Chen L; Zhang L; Wang Z; Liu R; Diao J; Zhou Z
    Chemosphere; 2020 Mar; 243():125288. PubMed ID: 31743868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanistic investigation of the noncytochrome P450-mediated metabolism of triadimefon to triadimenol in hepatic microsomes.
    Kenneke JF; Mazur CS; Ritger SE; Sack TJ
    Chem Res Toxicol; 2008 Oct; 21(10):1997-2004. PubMed ID: 18763812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Residue dynamics of clopyralid and picloram in rape plant rapeseed and field soil.
    Zhao P; Wang L; Chen L; Pan C
    Bull Environ Contam Toxicol; 2011 Jan; 86(1):78-82. PubMed ID: 21184051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissipation behavior, residue distribution and risk assessment of three fungicides in pears.
    Fang Q; Wu R; Hu G; Lai A; Wu K; Zhang L; Feng J; Cao H
    J Sci Food Agric; 2020 Mar; 100(4):1757-1763. PubMed ID: 31825523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil.
    Wagner C; Bonte A; Brühl L; Niehaus K; Bednarz H; Matthäus B
    J Sci Food Agric; 2018 Apr; 98(6):2147-2155. PubMed ID: 28960362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Processing Induced Degradation Routes of Prochloraz in Rapeseed Oil.
    Göckener B; Kotthoff M; Kling HW; Bücking M
    J Agric Food Chem; 2019 Nov; 67(44):12293-12302. PubMed ID: 31596580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of household and commercial processing on acetamiprid, azoxystrobin and methidathion residues during crude rapeseed oil production.
    Jiang Y; Shibamoto T; Li Y; Pan C
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(7):1279-86. PubMed ID: 23756237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissipation behaviour and dietary risk assessment of boscalid, triflumizole and its metabolite (FM-6-1) in open-field cucumber based on QuEChERS using HPLC-MS/MS technique.
    Niu J; Hu J
    J Sci Food Agric; 2018 Sep; 98(12):4501-4508. PubMed ID: 29479706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue distribution and metabolism of triadimefon and triadimenol enantiomers in Chinese lizards (Eremias argus).
    Li J; Wang Y; Li W; Xu P; Guo B; Li J; Wang H
    Ecotoxicol Environ Saf; 2017 Aug; 142():284-292. PubMed ID: 28433593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separation and determination of triadimefon and its metabolites triadimenol enantiomers in fruit puree by supercritical fluid chromatography.
    Zhang WH; Xu DM; Hou JB; He JM; Zhao F; Shi YZ; Qian Y
    J Sep Sci; 2023 May; 46(10):e2200875. PubMed ID: 36919985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous chiral separation of triadimefon and triadimenol by sulfated beta-cyclodextrin-mediated capillary electrophoresis.
    Wu YS; Lee HK; Li SF
    Electrophoresis; 2000 May; 21(8):1611-9. PubMed ID: 10832895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of storage and processing on residue levels of chlorpyrifos in soybeans.
    Zhao L; Ge J; Liu F; Jiang N
    Food Chem; 2014 May; 150():182-6. PubMed ID: 24360437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dissipation and residues of clethodim and its oxidation metabolites in a rape-field ecosystem using QuEChERS and liquid chromatography/tandem mass spectrometry.
    You X; Liang L; Liu F
    Food Chem; 2014 Jan; 143():170-4. PubMed ID: 24054227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Residue analysis of triadimefon, triadimenol, and the BAY KWG 1342 diol and BAY KWG 1323 hydroxylated metabolites in winter wheat.
    Ragab MT; Anderson MG; Johnston HW
    Bull Environ Contam Toxicol; 1990 Jan; 44(1):100-5. PubMed ID: 2306525
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.