These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 30126105)

  • 1. Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies.
    Maliogka VI; Minafra A; Saldarelli P; Ruiz-García AB; Glasa M; Katis N; Olmos A
    Viruses; 2018 Aug; 10(8):. PubMed ID: 30126105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Performance Evaluation of Double-Stranded RNA High-Throughput Sequencing for the Detection of Viral Infection in Temperate Fruit Crops.
    Marais A; Gentit P; Brans Y; Renvoisé JP; Faure C; Saison A; Cousseau P; Castaing J; Chambon F; Pion A; Calado G; Lefebvre M; Garnier S; Latour F; Bresson K; Grasseau N; Candresse T
    Phytopathology; 2024 Jul; 114(7):1701-1709. PubMed ID: 38376958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic, Morphological and Biological Traits of the Viruses Infecting Major Fruit Trees.
    Umer M; Liu J; You H; Xu C; Dong K; Luo N; Kong L; Li X; Hong N; Wang G; Fan X; Kotta-Loizou I; Xu W
    Viruses; 2019 Jun; 11(6):. PubMed ID: 31167478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of siRNAs for Diagnosis of Viruses Associated to Woody Plants in Nurseries and Stock Collections.
    Czotter N; Molnár J; Pesti R; Demián E; Baráth D; Varga T; Várallyay É
    Methods Mol Biol; 2018; 1746():115-130. PubMed ID: 29492890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next-generation sequencing of elite berry germplasm and data analysis using a bioinformatics pipeline for virus detection and discovery.
    Ho T; Martin RR; Tzanetakis IE
    Methods Mol Biol; 2015; 1302():301-13. PubMed ID: 25981263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current impact and future directions of high throughput sequencing in plant virus diagnostics.
    Massart S; Olmos A; Jijakli H; Candresse T
    Virus Res; 2014 Aug; 188():90-6. PubMed ID: 24717426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viromes of Plants Determined by High-Throughput Sequencing of Virus-Derived siRNAs.
    Jaksa-Czotter N; Nagyné Galbács Z; Jahan A; Demián E; Várallyay É
    Methods Mol Biol; 2024; 2732():179-198. PubMed ID: 38060126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virus testing by PCR and RT-PCR amplification in berry fruit.
    MacFarlane S; McGavin W; Tzanetakis I
    Methods Mol Biol; 2015; 1302():227-48. PubMed ID: 25981258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of pome and stone fruit virus diseases.
    Barba M; Ilardi V; Pasquini G
    Adv Virus Res; 2015; 91():47-83. PubMed ID: 25591877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput sequencing reveals a novel fabavirus infecting sweet cherry.
    Villamor DE; Pillai SS; Eastwell KC
    Arch Virol; 2017 Mar; 162(3):811-816. PubMed ID: 27815695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TASPERT: Target-Specific Reverse Transcript Pools to Improve HTS Plant Virus Diagnostics.
    Espindola AS; Sempertegui-Bayas D; Bravo-Padilla DF; Freire-Zapata V; Ochoa-Corona F; Cardwell KF
    Viruses; 2021 Jun; 13(7):. PubMed ID: 34202758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Next-Generation Sequencing Versus Biological Indexing for the Optimal Detection of Viral Pathogens in Grapevine.
    Al Rwahnih M; Daubert S; Golino D; Islas C; Rowhani A
    Phytopathology; 2015 Jun; 105(6):758-63. PubMed ID: 25689518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Sequencing Reveals
    Elbeaino T; Marais A; Faure C; Trioano E; Candresse T; Parrella G
    Viruses; 2018 Dec; 10(12):. PubMed ID: 30513865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viral Double-Stranded RNAs (dsRNAs) from Plants: Alternative Nucleic Acid Substrates for High-Throughput Sequencing.
    Marais A; Faure C; Bergey B; Candresse T
    Methods Mol Biol; 2018; 1746():45-53. PubMed ID: 29492885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a new apple luteovirus identified by high-throughput sequencing.
    Liu H; Wu L; Nikolaeva E; Peter K; Liu Z; Mollov D; Cao M; Li R
    Virol J; 2018 May; 15(1):85. PubMed ID: 29764461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Sequencing Identifies Novel Viruses in Nectarine: Insights to the Etiology of Stem-Pitting Disease.
    Villamor DE; Mekuria TA; Pillai SS; Eastwell KC
    Phytopathology; 2016 May; 106(5):519-27. PubMed ID: 26780433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of three bunya-like viruses infecting apple.
    Wright AA; Szostek SA; Beaver-Kanuya E; Harper SJ
    Arch Virol; 2018 Dec; 163(12):3339-3343. PubMed ID: 30132135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of molecular tests for the detection of ILAR and latent viruses in fruit trees.
    Roussel S; Kummert J; Dutrecq O; Lepoivre P; Jijakli MH
    Commun Agric Appl Biol Sci; 2004; 69(4):427-32. PubMed ID: 15756822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Use of High-Throughput Sequencing for the Study and Diagnosis of Plant Viruses and Viroids in Pollen.
    De Jonghe K; Haegeman A; Foucart Y; Maes M
    Methods Mol Biol; 2018; 1746():131-149. PubMed ID: 29492891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Throughput Sequencing For Plant Virus Detection and Discovery.
    Villamor DEV; Ho T; Al Rwahnih M; Martin RR; Tzanetakis IE
    Phytopathology; 2019 May; 109(5):716-725. PubMed ID: 30801236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.