These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30126137)

  • 1. Progress in Methanol Steam Reforming Modelling via Membrane Reactors Technology.
    Iulianelli A; Ghasemzadeh K; Basile A
    Membranes (Basel); 2018 Aug; 8(3):. PubMed ID: 30126137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors.
    Ghasem N
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors.
    Bagnato G; Iulianelli A; Sanna A; Basile A
    Membranes (Basel); 2017 Mar; 7(2):. PubMed ID: 28333121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalysts for Hydrogen Generation via Oxy-Steam Reforming of Methanol Process.
    Mosińska M; Szynkowska-Jóźwik MI; Mierczyński P
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.
    Zhang S; Zhang Y; Chen J; Zhang X; Liu X
    PLoS One; 2017; 12(11):e0187802. PubMed ID: 29121067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in Methanol Production and Utilization, with Particular Emphasis toward Hydrogen Generation via Membrane Reactor Technology.
    Dalena F; Senatore A; Basile M; Knani S; Basile A; Iulianelli A
    Membranes (Basel); 2018 Oct; 8(4):. PubMed ID: 30340434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic reforming of oxygenated hydrocarbons for the hydrogen production: an outlook.
    Azizan MT; Aqsha A; Ameen M; Syuhada A; Klaus H; Abidin SZ; Sher F
    Biomass Convers Biorefin; 2020 Oct; ():1-24. PubMed ID: 33110738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane.
    Christian MM; Kenis PJ
    Lab Chip; 2006 Oct; 6(10):1328-37. PubMed ID: 17111577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts.
    Lin L; Zhou W; Gao R; Yao S; Zhang X; Xu W; Zheng S; Jiang Z; Yu Q; Li YW; Shi C; Wen XD; Ma D
    Nature; 2017 Apr; 544(7648):80-83. PubMed ID: 28329760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Low-temperature Hydrogen Production by Electrochemical-assisted Methanol Steam Reforming.
    Liu Q; Du S; Liu T; Gong L; Wu Y; Lin J; Yang P; Huang G; Li M; Wu Y; Zhou Y; Li Y; Tao L; Wang S
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202315157. PubMed ID: 38143245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review.
    Lakhtaria P; Ribeirinha P; Huhtinen W; Viik S; Sousa J; Mendes A
    Open Res Eur; 2021; 1():81. PubMed ID: 37645145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM.
    Özcan MD; Özcan O; Akın AN
    Environ Technol; 2020 Jan; 41(1):14-28. PubMed ID: 31264942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.
    Lee CY; Lee SJ; Shen CC; Yeh CT; Chang CC; Lo YM
    Sensors (Basel); 2011; 11(2):2246-56. PubMed ID: 22319407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanol steam reforming for hydrogen production over NiTiO
    Jin Q; Meng X; Wu P; Li Y; Xu M; Zhou R; Yang M; Xu H
    RSC Adv; 2023 May; 13(24):16342-16351. PubMed ID: 37266498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of packed bed and coated wall microreactors for methanol steam reforming for hydrogen production.
    Hafeez S; Aristodemou E; Manos G; Al-Salem SM; Constantinou A
    RSC Adv; 2020 Nov; 10(68):41680-41692. PubMed ID: 35516550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and operation performance of the plate-heat transfer type hydrogen production reactor for bio-methanol reforming.
    Liu H; Li Y; Lu C; Zhang Z; Xiang G; Yang X; Zhang Q
    Bioresour Technol; 2023 Oct; 386():129509. PubMed ID: 37473786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature.
    Yu KM; Tong W; West A; Cheung K; Li T; Smith G; Guo Y; Tsang SC
    Nat Commun; 2012; 3():1230. PubMed ID: 23187630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steam reforming of polystyrene at a low temperature for high H
    Zhou H; Saad JM; Li Q; Xu Y
    Waste Manag; 2020 Mar; 104():42-50. PubMed ID: 31962216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.
    Kim T; Hwang JS; Kwon S
    Lab Chip; 2007 Jul; 7(7):835-41. PubMed ID: 17594001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.