BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30126248)

  • 1. Direct Detection of Toxic Contaminants in Minimally Processed Food Products Using Dendritic Surface-Enhanced Raman Scattering Substrates.
    Dies H; Siampani M; Escobedo C; Docoslis A
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30126248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Portable surface-enhanced Raman scattering analysis performed with microelectrode-templated silver nanodendrites.
    Raveendran J; Docoslis A
    Analyst; 2020 Jul; 145(13):4467-4476. PubMed ID: 32388541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique.
    Wang K; Sun DW; Pu H; Wei Q
    Food Chem; 2020 Apr; 310():125923. PubMed ID: 31837530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of polyhedral gold nanostars as surface-enhanced Raman spectroscopy substrates for measurement of thiram in peach juice.
    Sun L; Yu Z; Lin M
    Analyst; 2019 Aug; 144(16):4820-4825. PubMed ID: 31282496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine.
    Zhang C; You T; Yang N; Gao Y; Jiang L; Yin P
    Food Chem; 2019 Jul; 287():363-368. PubMed ID: 30857711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS.
    Hussain A; Sun DW; Pu H
    Food Chem; 2020 Jul; 317():126429. PubMed ID: 32109658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast self-assembly of silver nanostructures on carbon-coated copper grids for surface-enhanced Raman scattering detection of trace melamine.
    Cao Q; Yuan K; Yu J; Delaunay JJ; Che R
    J Colloid Interface Sci; 2017 Mar; 490():23-28. PubMed ID: 27870955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A SERS-based point-of-care testing approach for efficient determination of diquat and paraquat residues using a flexible silver flower-coated melamine sponge.
    Hu P; Zhang X; Zhang W; Song L; Wei H; Xiu H; Zhang M; Shang M; Wang C
    Food Chem; 2024 Oct; 454():139831. PubMed ID: 38838408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced Raman scattering device.
    Li D; Lv DY; Zhu QX; Li H; Chen H; Wu MM; Chai YF; Lu F
    Food Chem; 2017 Jun; 224():382-389. PubMed ID: 28159284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ seed-growth synthesis of silver nanoplates on glass for the detection of food contaminants by surface enhanced Raman scattering.
    D'Agostino A; Giovannozzi AM; Mandrile L; Sacco A; Rossi AM; Taglietti A
    Talanta; 2020 Aug; 216():120936. PubMed ID: 32456888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of thiram in fruit juices using a bacterial cellulose nanocrystal-based SERS substrate.
    Xiao L; Hua MZ; Lu X
    Int J Biol Macromol; 2024 Jan; 255():128207. PubMed ID: 37979753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous colorimetric and surface-enhanced Raman scattering detection of melamine from milk.
    Liu S; Kannegulla A; Kong X; Sun R; Liu Y; Wang R; Yu Q; Wang AX
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 231():118130. PubMed ID: 32044710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants.
    Alyami A; Quinn AJ; Iacopino D
    Talanta; 2019 Aug; 201():58-64. PubMed ID: 31122461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering.
    Giovannozzi AM; Rolle F; Sega M; Abete MC; Marchis D; Rossi AM
    Food Chem; 2014 Sep; 159():250-6. PubMed ID: 24767052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core-shell nanospheres for reliable quantitative SERS measurements.
    Lin S; Lin X; Han S; Liu Y; Hasi W; Wang L
    Anal Chim Acta; 2020 Apr; 1108():167-176. PubMed ID: 32222238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detect, remove and re-use: Sensing and degradation pesticides via 3D tilted ZMRs/Ag arrays.
    Quan Y; Yao J; Yang S; Chen L; Liu Y; Lang J; Zeng H; Yang J; Gao M
    J Hazard Mater; 2020 Jun; 391():122222. PubMed ID: 32062540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice.
    Zhang Y; Wang Y; Liu A; Liu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122721. PubMed ID: 37054572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Standing Gold Nanorod Arrays as Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk.
    Alsammarraie FK; Lin M
    J Agric Food Chem; 2017 Jan; 65(3):666-674. PubMed ID: 28080039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the Limit of Detection of Multiple Pesticides Utilizing Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy.
    Dowgiallo AM; Guenther DA
    J Agric Food Chem; 2019 Nov; 67(46):12642-12651. PubMed ID: 31188587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method.
    Hu B; Sun DW; Pu H; Wei Q
    Talanta; 2020 Sep; 217():120998. PubMed ID: 32498854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.