These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Tsubota K; Wada S; Liu H Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211 [TBL] [Abstract][Full Text] [Related]
4. A tensor-based measure for estimating blood damage. Arora D; Behr M; Pasquali M Artif Organs; 2004 Nov; 28(11):1002-15. PubMed ID: 15504116 [TBL] [Abstract][Full Text] [Related]
5. Full dynamics of a red blood cell in shear flow. Dupire J; Socol M; Viallat A Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20808-13. PubMed ID: 23213229 [TBL] [Abstract][Full Text] [Related]
6. Strain hardening of red blood cells by accumulated cyclic supraphysiological stress. Lee SS; Antaki JF; Kameneva MV; Dobbe JG; Hardeman MR; Ahn KH; Lee SJ Artif Organs; 2007 Jan; 31(1):80-6. PubMed ID: 17209965 [TBL] [Abstract][Full Text] [Related]
7. Simulation of erythrocyte deformation in a high shear flow. Nakamura M; Bessho S; Wada S Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2358-61. PubMed ID: 19965186 [TBL] [Abstract][Full Text] [Related]
8. Investigation of High-Speed Erythrocyte Flow and Erythrocyte-Wall Impact in a Lab-on-a-Chip. Li P; Zheng L; Zhang D; Xie Y; Feng Y; Xie G Artif Organs; 2016 Nov; 40(11):E203-E218. PubMed ID: 27230803 [TBL] [Abstract][Full Text] [Related]
9. Tank-treading and tumbling frequencies of capsules and red blood cells. Yazdani AZ; Kalluri RM; Bagchi P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046305. PubMed ID: 21599293 [TBL] [Abstract][Full Text] [Related]
10. A strain-based flow-induced hemolysis prediction model calibrated by in vitro erythrocyte deformation measurements. Chen Y; Sharp MK Artif Organs; 2011 Feb; 35(2):145-56. PubMed ID: 21091515 [TBL] [Abstract][Full Text] [Related]
11. Hemolysis in a laminar flow-through Couette shearing device: an experimental study. Boehning F; Mejia T; Schmitz-Rode T; Steinseifer U Artif Organs; 2014 Sep; 38(9):761-5. PubMed ID: 24867102 [TBL] [Abstract][Full Text] [Related]
12. Biphasic impairment of erythrocyte deformability in response to repeated, short duration exposures of supraphysiological, subhaemolytic shear stress. McNamee AP; Tansley GD; Sabapathy S; Simmonds MJ Biorheology; 2016 Nov; 53(3-4):137-149. PubMed ID: 27662271 [TBL] [Abstract][Full Text] [Related]
14. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis. Nakamura M; Bessho S; Wada S Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912 [TBL] [Abstract][Full Text] [Related]
15. Production of erythrocyte microparticles in a sub-hemolytic environment. Buerck JP; Burke DK; Schmidtke DW; Snyder TA; Papavassiliou DV; O'Rear EA J Artif Organs; 2021 Jun; 24(2):135-145. PubMed ID: 33420875 [TBL] [Abstract][Full Text] [Related]
16. Oscillatory tank-treading motion of erythrocytes in shear flows. Dodson WR; Dimitrakopoulos P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011913. PubMed ID: 21867219 [TBL] [Abstract][Full Text] [Related]
17. Tank-treading of swollen erythrocytes in shear flows. Dodson WR; Dimitrakopoulos P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021922. PubMed ID: 22463259 [TBL] [Abstract][Full Text] [Related]
19. Lactic Dehydrogenase in the In Vitro Evaluation of Hemolytic Properties of Ventricular Assist Device. Li D; Wu Q; Liu S; Chen Y; Chen H; Ruan Y; Zhang Y Artif Organs; 2017 Nov; 41(11):E274-E284. PubMed ID: 28722142 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of a single red blood cell in simple shear flow. Sinha K; Graham MD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042710. PubMed ID: 26565275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]