These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30126474)

  • 1. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.
    Sweeney MW; Kabouris JC
    Water Environ Res; 2018 Oct; 90(10):1007-1020. PubMed ID: 30126474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.
    Sweeney MW; Kabouris JC
    Water Environ Res; 2016 Oct; 88(10):1279-98. PubMed ID: 27620091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.
    Sweeney MW; Kabouris JC
    Water Environ Res; 2017 Oct; 89(10):1299-1314. PubMed ID: 28954661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling, instrumentation, automation, and optimization of water resource recovery facilities (Review of 2018 Literature) DIRECT.
    Sweeney M; Kabouris J
    Water Environ Res; 2020 Oct; 92(10):1618-1624. PubMed ID: 32706481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling, instrumentation, automation, and optimization of water resource recovery facilities (2019) DIRECT.
    Sweeney M; Kabouris J
    Water Environ Res; 2020 Oct; 92(10):1499-1503. PubMed ID: 32639061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.
    Sweeney MW; Kabouris JC
    Water Environ Res; 2015 Oct; 87(10):1178-95. PubMed ID: 26420085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An essential tool for WRRF modelling: a realistic and complete influent generator for flow rate and water quality based on data-driven methods.
    Li F; Vanrolleghem PA
    Water Sci Technol; 2022 May; 85(9):2722-2736. PubMed ID: 35576264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of wastewater treatment processes with hydrosludge.
    Iserte S; Carratalà P; Arnau R; Martínez-Cuenca R; Barreda P; Basiero L; Climent J; Chiva S
    Water Environ Res; 2021 Dec; 93(12):3049-3063. PubMed ID: 34755418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF).
    Seco A; Aparicio S; González-Camejo J; Jiménez-Benítez A; Mateo O; Mora JF; Noriega-Hevia G; Sanchis-Perucho P; Serna-García R; Zamorano-López N; Giménez JB; Ruiz-Martínez A; Aguado D; Barat R; Borrás L; Bouzas A; Martí N; Pachés M; Ribes J; Robles A; Ruano MV; Serralta J; Ferrer J
    Water Sci Technol; 2018 Dec; 78(9):1925-1936. PubMed ID: 30566096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From wastewater treatment to water resource recovery: Environmental and economic impacts of full-scale implementation.
    Faragò M; Damgaard A; Madsen JA; Andersen JK; Thornberg D; Andersen MH; Rygaard M
    Water Res; 2021 Oct; 204():117554. PubMed ID: 34500179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling energy costs for different operational strategies of a large water resource recovery facility.
    Póvoa P; Oehmen A; Inocêncio P; Matos JS; Frazão A
    Water Sci Technol; 2017 May; 75(9-10):2139-2148. PubMed ID: 28498126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaseous emissions from wastewater facilities.
    Koh SH; Shaw AR
    Water Environ Res; 2020 Oct; 92(10):1412-1417. PubMed ID: 32574390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating dairy manure for enhanced resource recovery at a WRRF: Environmental life cycle and pilot-scale analyses.
    Bryant C; Coats ER
    Water Environ Res; 2021 Oct; 93(10):2034-2050. PubMed ID: 33877720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lessons learnt at ICA2001. IWA Conference on Instrumentation, Control and Automation.
    Olsson G
    Water Sci Technol; 2002; 45(4-5):1-8. PubMed ID: 11936621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical review of the data pipeline: how wastewater system operation flows from data to intelligence.
    Therrien JD; Nicolaï N; Vanrolleghem PA
    Water Sci Technol; 2020 Dec; 82(12):2613-2634. PubMed ID: 33341759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lessons learnt from 15 years of ICA in anaerobic digesters.
    Steyer JP; Bernard O; Batstone DJ; Angelidaki I
    Water Sci Technol; 2006; 53(4-5):25-33. PubMed ID: 16722052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instrumentation control and automation in the control of biological effluent treatment.
    Briggs R; Grattan KT
    ISA Trans; 1992; 31(1):111-23. PubMed ID: 1735638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization-based methodology for the development of wastewater facilities for energy and nutrient recovery.
    Puchongkawarin C; Gomez-Mont C; Stuckey DC; Chachuat B
    Chemosphere; 2015 Dec; 140():150-8. PubMed ID: 25262948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instrumentation, control and automation in the water industry--state-of-the-art and new challenges.
    Olsson G
    Water Sci Technol; 2006; 53(4-5):1-16. PubMed ID: 16722050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precipitation effects on parasite, indicator bacteria, and wastewater micropollutant loads from a water resource recovery facility influent and effluent.
    Tolouei S; Autixier L; Taghipour M; Burnet JB; Bonsteel J; Duy SV; Sauvé S; Prévost M; Dorner S
    J Water Health; 2019 Oct; 17(5):701-716. PubMed ID: 31638022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.