These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 30126593)
41. Development of bilayer tissue-engineered scaffolds: combination of 3D printing and electrospinning methodologies. Yilmaz H; Bedir T; Gursoy S; Kaya E; Senel I; Tinaz GB; Gunduz O; Ustundag CB Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38838701 [TBL] [Abstract][Full Text] [Related]
42. Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application. Yoon HJ; Shin SR; Cha JM; Lee SH; Kim JH; Do JT; Song H; Bae H PLoS One; 2016; 11(10):e0163902. PubMed ID: 27723807 [TBL] [Abstract][Full Text] [Related]
43. Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Luo Z; Sun W; Fang J; Lee K; Li S; Gu Z; Dokmeci MR; Khademhosseini A Adv Healthc Mater; 2019 Feb; 8(3):e1801054. PubMed ID: 30565887 [TBL] [Abstract][Full Text] [Related]
45. Progress in cardiac tissue engineering and regeneration: Implications of gelatin-based hybrid scaffolds. Asl SK; Rahimzadegan M; Asl AK Int J Biol Macromol; 2024 Mar; 261(Pt 2):129924. PubMed ID: 38311143 [TBL] [Abstract][Full Text] [Related]
46. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. Liang J; Guo Z; Timmerman A; Grijpma D; Poot A Biomed Mater; 2019 Jan; 14(2):024102. PubMed ID: 30524039 [TBL] [Abstract][Full Text] [Related]
47. Ferritin Nanocage Conjugated Hybrid Hydrogel for Tissue Engineering and Drug Delivery Applications. Samanipour R; Wang T; Werb M; Hassannezhad H; Rangel JML; Hoorfar M; Hasan A; Lee CK; Shin SR ACS Biomater Sci Eng; 2020 Jan; 6(1):277-287. PubMed ID: 33313389 [TBL] [Abstract][Full Text] [Related]
48. Development of GelMA/PCL and dECM/PCL resins for 3D printing of acellular in vitro tissue scaffolds by stereolithography. Elomaa L; Keshi E; Sauer IM; Weinhart M Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110958. PubMed ID: 32409091 [TBL] [Abstract][Full Text] [Related]
49. Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels. Naseer SM; Manbachi A; Samandari M; Walch P; Gao Y; Zhang YS; Davoudi F; Wang W; Abrinia K; Cooper JM; Khademhosseini A; Shin SR Biofabrication; 2017 Feb; 9(1):015020. PubMed ID: 28195834 [TBL] [Abstract][Full Text] [Related]
50. Sonochemical Degradation of Gelatin Methacryloyl to Control Viscoelasticity for Inkjet Bioprinting. Lee Y; Park JA; Tuladhar T; Jung S Macromol Biosci; 2023 May; 23(5):e2200509. PubMed ID: 36896820 [TBL] [Abstract][Full Text] [Related]
51. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting. Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722 [TBL] [Abstract][Full Text] [Related]
52. 3D Printable Gelatin Methacryloyl (GelMA)-Dextran Aqueous Two-Phase System with Tunable Pores Structure and Size Enables Physiological Behavior of Embedded Cells In Vitro. Ben Messaoud G; Aveic S; Wachendoerfer M; Fischer H; Richtering W Small; 2023 Nov; 19(44):e2208089. PubMed ID: 37403299 [TBL] [Abstract][Full Text] [Related]
53. 3D Printing GelMA/PVA Interpenetrating Polymer Networks Scaffolds Mediated with CuO Nanoparticles for Angiogenesis. Hu Q; Lu R; Liu S; Liu Y; Gu Y; Zhang H Macromol Biosci; 2022 Oct; 22(10):e2200208. PubMed ID: 35904133 [TBL] [Abstract][Full Text] [Related]
54. Engineering Microgel Packing to Tailor the Physical and Biological Properties of Gelatin Methacryloyl Granular Hydrogel Scaffolds. Jaberi A; Kedzierski A; Kheirabadi S; Tagay Y; Ataie Z; Zavari S; Naghashnejad M; Waldron O; Adhikari D; Lester G; Gallagher C; Borhan A; Ravnic D; Tabdanov E; Sheikhi A Adv Healthc Mater; 2024 Oct; 13(25):e2402489. PubMed ID: 39152936 [TBL] [Abstract][Full Text] [Related]
55. Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds. Bittner SM; Pearce HA; Hogan KJ; Smoak MM; Guo JL; Melchiorri AJ; Scott DW; Mikos AG Tissue Eng Part A; 2021 Jun; 27(11-12):665-678. PubMed ID: 33470161 [TBL] [Abstract][Full Text] [Related]
56. SLA-3d printed building and characteristics of GelMA/HAP biomaterials with gradient porous structure. Chen Q; Zou B; Wang X; Zhou X; Yang G; Lai Q; Zhao Y J Mech Behav Biomed Mater; 2024 Jul; 155():106553. PubMed ID: 38640694 [TBL] [Abstract][Full Text] [Related]
57. Hydrophobic association: A facile approach to prepare physical cross-linked gelatin hydrogel with desirable thermal stability, flexibility and self-healing ability. Liao F; Tian Z; Yang X; Yang H; Liu X; Liao H; Duan L Int J Biol Macromol; 2024 Mar; 262(Pt 1):130058. PubMed ID: 38340943 [TBL] [Abstract][Full Text] [Related]
58. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [TBL] [Abstract][Full Text] [Related]