BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 30126718)

  • 1. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling variable density flow in subsurface and surface water in the vicinity of the boundary between a surface water-atmosphere system and the subsurface.
    Hibi Y
    J Contam Hydrol; 2020 Oct; 234():103688. PubMed ID: 32745797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.
    Hibi Y; Tomigashi A
    J Contam Hydrol; 2015 Sep; 180():34-55. PubMed ID: 26255905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice Boltzmann model for incompressible flows through porous media.
    Guo Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036304. PubMed ID: 12366250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels.
    Fambri F; Dumbser M; Casulli V
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1170-98. PubMed ID: 24842268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a numerical simulation model for a system coupling atmospheric gas, surface water and unsaturated or saturated porous medium.
    Hibi Y; Tomigashi A; Hirose M
    J Contam Hydrol; 2015 Dec; 183():121-34. PubMed ID: 26583741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface condition for the Darcy velocity at the water-oil flood front in the porous medium.
    Peng X; Liu Y; Liang B; Du Z
    PLoS One; 2017; 12(5):e0177187. PubMed ID: 28542612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media.
    Icardi M; Boccardo G; Marchisio DL; Tosco T; Sethi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013032. PubMed ID: 25122394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fully coupled porous media and channels flow approach for simulation of blood and bile flow through the liver lobules.
    Mosharaf-Dehkordi M
    Comput Methods Biomech Biomed Engin; 2019 Jul; 22(9):901-915. PubMed ID: 31124725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cilia-assisted flow of viscoelastic fluid in a divergent channel under porosity effects.
    Javid K; Alqsair UF; Hassan M; Bhatti MM; Ahmad T; Bobescu E
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1399-1412. PubMed ID: 33774754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts.
    Zu YQ; He S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043301. PubMed ID: 23679542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of the contrast-enhanced perfusion test in liver based on the multi-compartment flow in porous media.
    Rohan E; Lukeš V; Jonášová A
    J Math Biol; 2018 Aug; 77(2):421-454. PubMed ID: 29368273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media.
    Paéz-García CT; Valdés-Parada FJ; Lasseux D
    Phys Rev E; 2017 Feb; 95(2-1):023101. PubMed ID: 28297957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An X-FEM technique for numerical simulation of variable-density flow in fractured porous media.
    Khoei AR; Saeedmonir S; Hosseini N; Mousavi SM
    MethodsX; 2023; 10():102137. PubMed ID: 37035525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robin-Robin Domain Decomposition Method for a Stokes-Darcy Structure Interaction with a Locally Modified Mesh.
    Wang Z; Li Z; Lubkin S
    Numer Math; 2014; 7():435-446. PubMed ID: 28983165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of the free surface and water inflow of a slope, considering the nonlinear flow properties of gravel layers: a case study.
    Yang B; Yang T; Xu Z; Liu H; Shi W; Yang X
    R Soc Open Sci; 2018 Feb; 5(2):172109. PubMed ID: 29515904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of time-resolved 3D phase-contrast magnetic resonance imaging.
    Puiseux T; Sewonu A; Moreno R; Mendez S; Nicoud F
    PLoS One; 2021; 16(3):e0248816. PubMed ID: 33770130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.