These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 30126718)

  • 1. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling variable density flow in subsurface and surface water in the vicinity of the boundary between a surface water-atmosphere system and the subsurface.
    Hibi Y
    J Contam Hydrol; 2020 Oct; 234():103688. PubMed ID: 32745797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.
    Hibi Y; Tomigashi A
    J Contam Hydrol; 2015 Sep; 180():34-55. PubMed ID: 26255905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice Boltzmann model for incompressible flows through porous media.
    Guo Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036304. PubMed ID: 12366250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels.
    Fambri F; Dumbser M; Casulli V
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1170-98. PubMed ID: 24842268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a numerical simulation model for a system coupling atmospheric gas, surface water and unsaturated or saturated porous medium.
    Hibi Y; Tomigashi A; Hirose M
    J Contam Hydrol; 2015 Dec; 183():121-34. PubMed ID: 26583741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface condition for the Darcy velocity at the water-oil flood front in the porous medium.
    Peng X; Liu Y; Liang B; Du Z
    PLoS One; 2017; 12(5):e0177187. PubMed ID: 28542612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media.
    Icardi M; Boccardo G; Marchisio DL; Tosco T; Sethi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013032. PubMed ID: 25122394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fully coupled porous media and channels flow approach for simulation of blood and bile flow through the liver lobules.
    Mosharaf-Dehkordi M
    Comput Methods Biomech Biomed Engin; 2019 Jul; 22(9):901-915. PubMed ID: 31124725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cilia-assisted flow of viscoelastic fluid in a divergent channel under porosity effects.
    Javid K; Alqsair UF; Hassan M; Bhatti MM; Ahmad T; Bobescu E
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1399-1412. PubMed ID: 33774754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts.
    Zu YQ; He S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043301. PubMed ID: 23679542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of the contrast-enhanced perfusion test in liver based on the multi-compartment flow in porous media.
    Rohan E; Lukeš V; Jonášová A
    J Math Biol; 2018 Aug; 77(2):421-454. PubMed ID: 29368273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media.
    Paéz-García CT; Valdés-Parada FJ; Lasseux D
    Phys Rev E; 2017 Feb; 95(2-1):023101. PubMed ID: 28297957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An X-FEM technique for numerical simulation of variable-density flow in fractured porous media.
    Khoei AR; Saeedmonir S; Hosseini N; Mousavi SM
    MethodsX; 2023; 10():102137. PubMed ID: 37035525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robin-Robin Domain Decomposition Method for a Stokes-Darcy Structure Interaction with a Locally Modified Mesh.
    Wang Z; Li Z; Lubkin S
    Numer Math; 2014; 7():435-446. PubMed ID: 28983165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of the free surface and water inflow of a slope, considering the nonlinear flow properties of gravel layers: a case study.
    Yang B; Yang T; Xu Z; Liu H; Shi W; Yang X
    R Soc Open Sci; 2018 Feb; 5(2):172109. PubMed ID: 29515904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of time-resolved 3D phase-contrast magnetic resonance imaging.
    Puiseux T; Sewonu A; Moreno R; Mendez S; Nicoud F
    PLoS One; 2021; 16(3):e0248816. PubMed ID: 33770130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.