BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30126942)

  • 1. Targeting Myddosome Signaling in Waldenström's Macroglobulinemia with the Interleukin-1 Receptor-Associated Kinase 1/4 Inhibitor R191.
    Ni H; Shirazi F; Baladandayuthapani V; Lin H; Kuiatse I; Wang H; Jones RJ; Berkova Z; Hitoshi Y; Ansell SM; Treon SP; Thomas SK; Lee HC; Wang Z; Davis RE; Orlowski RZ
    Clin Cancer Res; 2018 Dec; 24(24):6408-6420. PubMed ID: 30126942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MYD88 L265P somatic mutation in Waldenström's macroglobulinemia.
    Treon SP; Xu L; Yang G; Zhou Y; Liu X; Cao Y; Sheehy P; Manning RJ; Patterson CJ; Tripsas C; Arcaini L; Pinkus GS; Rodig SJ; Sohani AR; Harris NL; Laramie JM; Skifter DA; Lincoln SE; Hunter ZR
    N Engl J Med; 2012 Aug; 367(9):826-33. PubMed ID: 22931316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interleukin-1 Receptor-Associated Kinase (IRAK) Signaling in Kaposi Sarcoma-Associated Herpesvirus-Induced Primary Effusion Lymphoma.
    Seltzer J; Moorad R; Schifano JM; Landis JT; Dittmer DP
    J Virol; 2020 May; 94(10):. PubMed ID: 32161170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleural fluid MYD88 L265P mutation supporting diagnosis and decision to treat extramedullary Waldenstrom's macroglobulinemia: a case report.
    Barnes M; Sharma P; Kumar V; Kaell A; LiPera W
    J Med Case Rep; 2020 Jul; 14(1):98. PubMed ID: 32654665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia.
    Yang G; Zhou Y; Liu X; Xu L; Cao Y; Manning RJ; Patterson CJ; Buhrlage SJ; Gray N; Tai YT; Anderson KC; Hunter ZR; Treon SP
    Blood; 2013 Aug; 122(7):1222-32. PubMed ID: 23836557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ibrutinib in previously treated Waldenström's macroglobulinemia.
    Treon SP; Tripsas CK; Meid K; Warren D; Varma G; Green R; Argyropoulos KV; Yang G; Cao Y; Xu L; Patterson CJ; Rodig S; Zehnder JL; Aster JC; Harris NL; Kanan S; Ghobrial I; Castillo JJ; Laubach JP; Hunter ZR; Salman Z; Li J; Cheng M; Clow F; Graef T; Palomba ML; Advani RH
    N Engl J Med; 2015 Apr; 372(15):1430-40. PubMed ID: 25853747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel approaches to targeting MYD88 in Waldenström macroglobulinemia.
    Castillo JJ; Hunter ZR; Yang G; Treon SP
    Expert Rev Hematol; 2017 Aug; 10(8):739-744. PubMed ID: 28617062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status.
    Cea M; Cagnetta A; Acharya C; Acharya P; Tai YT; Yang C; Lovera D; Soncini D; Miglino M; Fraternali-Orcioni G; Mastracci L; Nencioni A; Montecucco F; Monacelli F; Ballestrero A; Hideshima T; Chauhan D; Gobbi M; Lemoli RM; Munshi N; Treon SP; Anderson KC
    Clin Cancer Res; 2016 Dec; 22(24):6099-6109. PubMed ID: 27287071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L265P mutation of the MYD88 gene is frequent in Waldenström's macroglobulinemia and its absence in myeloma.
    Mori N; Ohwashi M; Yoshinaga K; Mitsuhashi K; Tanaka N; Teramura M; Okada M; Shiseki M; Tanaka J; Motoji T
    PLoS One; 2013; 8(11):e80088. PubMed ID: 24224040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel agents in the treatment of Waldenström's macroglobulinemia.
    Treon SP; Hatjiharissi E; Leleu X; Moreau AS; Roccaro A; Hunter ZR; Soumerai JD; Ciccarelli B; Xu L; Sacco A; Ngo HT; Jia X; Yang C; Adamia S; Branagan AR; Ho AW; Santos DD; Tournilhac O; Manning RJ; Leduc R; O'Connor K; Nelson M; Patterson CJ; Ghobrial I
    Clin Lymphoma Myeloma; 2007 Aug; 7 Suppl 5():S199-206. PubMed ID: 17877845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Diagnostic, Prognostic, and Therapeutic Utility of Molecular Testing in a Patient with Waldenstrom's Macroglobulinemia.
    Chin CK; Leslie C; Grove CS; Van Vliet C; Cheah CY
    Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28937595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of interleukin-1beta -induced NF-kappa B activation by calcium/calmodulin-dependent protein kinase kinase occurs through Akt activation associated with interleukin-1 receptor-associated kinase phosphorylation and uncoupling of MyD88.
    Chen BC; Wu WT; Ho FM; Lin WW
    J Biol Chem; 2002 Jul; 277(27):24169-79. PubMed ID: 11976320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of optineurin as an interleukin-1 receptor-associated kinase 1-binding protein and its role in regulation of MyD88-dependent signaling.
    Tanishima M; Takashima S; Honda A; Yasuda D; Tanikawa T; Ishii S; MaruYama T
    J Biol Chem; 2017 Oct; 292(42):17250-17257. PubMed ID: 28882891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of dual PI3/Akt and mTOR inhibition in Waldenstrom's Macroglobulinemia.
    Sacco A; Roccaro A; Ghobrial IM
    Oncotarget; 2010 Nov; 1(7):578-582. PubMed ID: 21317453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resveratrol exerts antiproliferative activity and induces apoptosis in Waldenström's macroglobulinemia.
    Roccaro AM; Leleu X; Sacco A; Moreau AS; Hatjiharissi E; Jia X; Xu L; Ciccarelli B; Patterson CJ; Ngo HT; Russo D; Vacca A; Dammacco F; Anderson KC; Ghobrial IM; Treon SP
    Clin Cancer Res; 2008 Mar; 14(6):1849-58. PubMed ID: 18347188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multicenter, open-label, phase II study of tirabrutinib (ONO/GS-4059) in patients with Waldenström's macroglobulinemia.
    Sekiguchi N; Rai S; Munakata W; Suzuki K; Handa H; Shibayama H; Endo T; Terui Y; Iwaki N; Fukuhara N; Tatetsu H; Iida S; Ishikawa T; Shiibashi R; Izutsu K
    Cancer Sci; 2020 Sep; 111(9):3327-3337. PubMed ID: 32639651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoclonal gammopathy of undetermined significance and Waldenström's macroglobulinemia.
    Mailankody S; Landgren O
    Best Pract Res Clin Haematol; 2016 Jun; 29(2):187-193. PubMed ID: 27825465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of activity of the TORC1 inhibitor everolimus in Waldenstrom macroglobulinemia.
    Roccaro AM; Sacco A; Jia X; Banwait R; Maiso P; Azab F; Flores L; Manier S; Azab AK; Ghobrial IM
    Clin Cancer Res; 2012 Dec; 18(24):6609-22. PubMed ID: 23048077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the Spleen Tyrosine Kinase with Fostamatinib as a Strategy against Waldenström Macroglobulinemia.
    Kuiatse I; Baladandayuthapani V; Lin HY; Thomas SK; Bjorklund CC; Weber DM; Wang M; Shah JJ; Zhang XD; Jones RJ; Ansell SM; Yang G; Treon SP; Orlowski RZ
    Clin Cancer Res; 2015 Jun; 21(11):2538-45. PubMed ID: 25748087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MYD88-independent growth and survival effects of Sp1 transactivation in Waldenstrom macroglobulinemia.
    Fulciniti M; Amodio N; Bandi RL; Munshi M; Yang G; Xu L; Hunter Z; Tassone P; Anderson KC; Treon SP; Munshi NC
    Blood; 2014 Apr; 123(17):2673-81. PubMed ID: 24622324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.