These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 30127365)
1. Active-Tuning and Polarization-Independent Absorber and Sensor in the Infrared Region Based on the Phase Change Material of Ge Guo Z; Yang X; Shen F; Zhou Q; Gao J; Guo K Sci Rep; 2018 Aug; 8(1):12433. PubMed ID: 30127365 [TBL] [Abstract][Full Text] [Related]
2. Tunable narrowband shortwave-infrared absorber made of a nanodisk-based metasurface and a phase-change material Ge Zhang S; Zhou K; Cheng Q; Lu L; Li B; Song J; Luo Z Appl Opt; 2020 Jul; 59(21):6309-6314. PubMed ID: 32749294 [TBL] [Abstract][Full Text] [Related]
3. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. Mou N; Liu X; Wei T; Dong H; He Q; Zhou L; Zhang Y; Zhang L; Sun S Nanoscale; 2020 Mar; 12(9):5374-5379. PubMed ID: 31994580 [TBL] [Abstract][Full Text] [Related]
4. Dynamically Switchable Polarization-Independent Triple-Band Perfect Metamaterial Absorber Using a Phase-Change Material in the Mid-Infrared (MIR) Region. Xu D; Cui F; Zheng G Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34064884 [TBL] [Abstract][Full Text] [Related]
5. Tunable broadband, wide-angle, and polarization-dependent perfect infrared absorber based on planar structure containing phase-change material. Wang X; Ding W; Zhu H; Liu C; Liu Y Appl Opt; 2018 Oct; 57(30):8915-8920. PubMed ID: 30461873 [TBL] [Abstract][Full Text] [Related]
6. Polarization-independent and omnidirectional nearly perfect absorber with ultra-thin 2D subwavelength metal grating in the visible region. Zhou W; Li K; Song C; Hao P; Chi M; Yu M; Wu Y Opt Express; 2015 Jun; 23(11):A413-8. PubMed ID: 26072865 [TBL] [Abstract][Full Text] [Related]
7. Experimental demonstration of Ge Verma SK; Jangra M; Datta A; Srivastava SK Opt Lett; 2024 Aug; 49(16):4638-4641. PubMed ID: 39146123 [TBL] [Abstract][Full Text] [Related]
8. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Cao T; Wei CW; Simpson RE; Zhang L; Cryan MJ Sci Rep; 2014 Feb; 4():3955. PubMed ID: 24492415 [TBL] [Abstract][Full Text] [Related]
9. Intensity Switchable and Wide-Angle Mid-Infrared Perfect Absorber with Lithography-Free Phase-Change Film of Ge Hua X; Zheng G Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31195643 [TBL] [Abstract][Full Text] [Related]
10. Reconfigurable and spectrally switchable perfect absorber based on a phase-change material. Prakash S R; Kumar R; Mitra A Appl Opt; 2022 Apr; 61(10):2888-2897. PubMed ID: 35471366 [TBL] [Abstract][Full Text] [Related]
11. Near-Infrared Rewritable, Non-Volatile Subwavelength Absorber Based on Chalcogenide Phase Change Materials. Zhang J; Zhang Y; Hong Q; Xu W; Zhu Z; Yuan X Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32585899 [TBL] [Abstract][Full Text] [Related]
12. Designing a nearly perfect infrared absorber in monolayer black phosphorus. Dong D; Liu Y; Fei Y; Fan Y; Li J; Feng Y; Fu Y Appl Opt; 2019 May; 58(14):3862-3869. PubMed ID: 31158205 [TBL] [Abstract][Full Text] [Related]
13. A phase-change thin film-tuned photonic crystal device. Liu L; Mahmood R; Wei L; Hillier AC; Lu M Nanotechnology; 2019 Jan; 30(4):045203. PubMed ID: 30468679 [TBL] [Abstract][Full Text] [Related]
14. Dual-band tunable perfect metamaterial absorber based on graphene. Wang F; Huang S; Li L; Chen W; Xie Z Appl Opt; 2018 Aug; 57(24):6916-6922. PubMed ID: 30129577 [TBL] [Abstract][Full Text] [Related]
15. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor. Wu D; Liu Y; Li R; Chen L; Ma R; Liu C; Ye H Nanoscale Res Lett; 2016 Dec; 11(1):483. PubMed ID: 27807825 [TBL] [Abstract][Full Text] [Related]
16. Multi-band perfect absorber based on an elliptical cavity coupled with an elliptical metal nanorod. Pan Y; Li Y; Chen F; Cheng S; Yang W; Wang B; Yi Z Phys Chem Chem Phys; 2024 Jan; 26(5):4597-4606. PubMed ID: 38250817 [TBL] [Abstract][Full Text] [Related]
17. Ge Sreekanth KV; Han S; Singh R Adv Mater; 2018 May; 30(21):e1706696. PubMed ID: 29635805 [TBL] [Abstract][Full Text] [Related]
18. Large-Area Broadband Near-Perfect Absorption from a Thin Chalcogenide Film Coupled to Gold Nanoparticles. Cao T; Liu K; Lu L; Chui HC; Simpson RE ACS Appl Mater Interfaces; 2019 Feb; 11(5):5176-5182. PubMed ID: 30632371 [TBL] [Abstract][Full Text] [Related]
19. Perfect Absorption Efficiency Circular Nanodisk Array Integrated with a Reactive Impedance Surface with High Field Enhancement. Anam MK; Choi S Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32024263 [TBL] [Abstract][Full Text] [Related]
20. Ultra-Narrow Band Mid-Infrared Perfect Absorber Based on Hybrid Dielectric Metasurface. Chen S; Chen Z; Liu J; Cheng J; Zhou Y; Xiao L; Chen K Nanomaterials (Basel); 2019 Sep; 9(10):. PubMed ID: 31547054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]