These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 30127376)
1. Metabolic profiles of cysteine, methionine, glutamate, glutamine, arginine, aspartate, asparagine, alanine and glutathione in Streptococcus thermophilus during pH-controlled batch fermentations. Qiao Y; Liu G; Leng C; Zhang Y; Lv X; Chen H; Sun J; Feng Z Sci Rep; 2018 Aug; 8(1):12441. PubMed ID: 30127376 [TBL] [Abstract][Full Text] [Related]
2. Influence of arginine on the growth, arginine metabolism and amino acid consumption profiles of Streptococcus thermophilus T1C2 in controlled pH batch fermentations. Huang S; Ai ZW; Sun XM; Liu GF; Zhai S; Zhang M; Chen H; Feng Z J Appl Microbiol; 2016 Sep; 121(3):746-56. PubMed ID: 27377190 [TBL] [Abstract][Full Text] [Related]
3. Short communication: Evaluation of amino acid consumption and necessary profiles of Streptococcus thermophilus T1C2 in controlled pH batch fermentations. Hong C; Shuang Z; Miao X; Min Z; Xin-Tong L; Hong-Ling D; Chun-Li M; Zhen F J Dairy Sci; 2015 May; 98(5):3010-5. PubMed ID: 25726107 [TBL] [Abstract][Full Text] [Related]
4. Profiles of Streptococcus thermophilus MN-ZLW-002 nutrient requirements in controlled pH batch fermentations. Liu G; Qiao Y; Zhang Y; Leng C; Sun J; Chen H; Zhang Y; Li A; Feng Z Microbiologyopen; 2019 Feb; 8(2):e00633. PubMed ID: 29682906 [TBL] [Abstract][Full Text] [Related]
6. Ammonia production by rumen microbes in vitro. Henderickx HK; Demeyer DI Naturwissenschaften; 1967 Jul; 54(14):369-70. PubMed ID: 5626694 [No Abstract] [Full Text] [Related]
7. Genome-Scale Metabolic Modeling Combined with Transcriptome Profiling Provides Mechanistic Understanding of Streptococcus thermophilus CH8 Metabolism. Rau MH; Gaspar P; Jensen ML; Geppel A; Neves AR; Zeidan AA Appl Environ Microbiol; 2022 Aug; 88(16):e0078022. PubMed ID: 35924931 [TBL] [Abstract][Full Text] [Related]
8. Transcriptomic and proteomic profiling revealed global changes in Streptococcus thermophilus during pH-controlled batch fermentations. Qiao Y; Leng C; Liu G; Zhang Y; Lv X; Chen H; Sun J; Feng Z J Microbiol; 2019 Sep; 57(9):769-780. PubMed ID: 31201725 [TBL] [Abstract][Full Text] [Related]
9. Metabolite and light regulation of metabolism in plants: lessons from the study of a single biochemical pathway. Oliveira IC; Brenner E; Chiu J; Hsieh MH; Kouranov A; Lam HM; Shin MJ; Coruzzi G Braz J Med Biol Res; 2001 May; 34(5):567-75. PubMed ID: 11323742 [TBL] [Abstract][Full Text] [Related]
10. Aspartate biosynthesis is essential for the growth of Streptococcus thermophilus in milk, and aspartate availability modulates the level of urease activity. Arioli S; Monnet C; Guglielmetti S; Parini C; De Noni I; Hogenboom J; Halami PM; Mora D Appl Environ Microbiol; 2007 Sep; 73(18):5789-96. PubMed ID: 17660309 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of Glutamate, Aspartate, Asparagine, L-Alanine, and D-Alanine. Reitzer L EcoSal Plus; 2004 Dec; 1(1):. PubMed ID: 26443364 [TBL] [Abstract][Full Text] [Related]
12. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Pastink MI; Teusink B; Hols P; Visser S; de Vos WM; Hugenholtz J Appl Environ Microbiol; 2009 Jun; 75(11):3627-33. PubMed ID: 19346354 [TBL] [Abstract][Full Text] [Related]
13. The relevance of carbon dioxide metabolism in Streptococcus thermophilus. Arioli S; Roncada P; Salzano AM; Deriu F; Corona S; Guglielmetti S; Bonizzi L; Scaloni A; Mora D Microbiology (Reading); 2009 Jun; 155(Pt 6):1953-1965. PubMed ID: 19372152 [TBL] [Abstract][Full Text] [Related]
14. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Sieuwerts S; Molenaar D; van Hijum SA; Beerthuyzen M; Stevens MJ; Janssen PW; Ingham CJ; de Bok FA; de Vos WM; van Hylckama Vlieg JE Appl Environ Microbiol; 2010 Dec; 76(23):7775-84. PubMed ID: 20889781 [TBL] [Abstract][Full Text] [Related]
15. Metabolic fingerprinting reveals extensive consequences of GLS hyperactivity. Rumping L; Pras-Raves ML; Gerrits J; Tang YF; Willemsen MA; Houwen RHJ; van Haaften G; van Hasselt PM; Verhoeven-Duif NM; Jans JJM Biochim Biophys Acta Gen Subj; 2020 Mar; 1864(3):129484. PubMed ID: 31734463 [TBL] [Abstract][Full Text] [Related]
16. A Critical Role of Glutamine and Asparagine γ-Nitrogen in Nucleotide Biosynthesis in Cancer Cells Hijacked by an Oncogenic Virus. Zhu Y; Li T; Ramos da Silva S; Lee JJ; Lu C; Eoh H; Jung JU; Gao SJ mBio; 2017 Aug; 8(4):. PubMed ID: 28811348 [TBL] [Abstract][Full Text] [Related]
17. Nutrition of Vitreoscilla stercoraria. Mayfield DC; Kester AS Can J Microbiol; 1975 Dec; 21(12):1947-51. PubMed ID: 1220862 [TBL] [Abstract][Full Text] [Related]
18. NUTRITIONAL FACTORS RELATING TO GROWTH AND OXYTETRACYCLINE FORMATION BY STREPTOMYCES RIMOSUS. ZYGMUNT WA Can J Microbiol; 1964 Jun; 10():389-95. PubMed ID: 14187008 [No Abstract] [Full Text] [Related]
19. Stable isotope studies reveal pathways for the incorporation of non-essential amino acids in Acyrthosiphon pisum (pea aphids). Haribal M; Jander G J Exp Biol; 2015 Dec; 218(Pt 23):3797-806. PubMed ID: 26632455 [TBL] [Abstract][Full Text] [Related]
20. Amino acid metabolism of bovine blastocysts derived from parthenogenetically activated or in vitro fertilized oocytes. Jung YG; Sakata T; Lee ES; Fukui Y Reprod Fertil Dev; 1998; 10(3):279-87. PubMed ID: 11596875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]