BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 30127529)

  • 1. The fitness landscape of the codon space across environments.
    Fragata I; Matuszewski S; Schmitz MA; Bataillon T; Jensen JD; Bank C
    Heredity (Edinb); 2018 Nov; 121(5):422-437. PubMed ID: 30127529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the (un)predictability of a large intragenic fitness landscape.
    Bank C; Matuszewski S; Hietpas RT; Jensen JD
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14085-14090. PubMed ID: 27864516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bayesian MCMC approach to assess the complete distribution of fitness effects of new mutations: uncovering the potential for adaptive walks in challenging environments.
    Bank C; Hietpas RT; Wong A; Bolon DN; Jensen JD
    Genetics; 2014 Mar; 196(3):841-52. PubMed ID: 24398421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic survey of an intragenic epistatic landscape.
    Bank C; Hietpas RT; Jensen JD; Bolon DN
    Mol Biol Evol; 2015 Jan; 32(1):229-38. PubMed ID: 25371431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shifting fitness landscapes in response to altered environments.
    Hietpas RT; Bank C; Jensen JD; Bolon DNA
    Evolution; 2013 Dec; 67(12):3512-22. PubMed ID: 24299404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental illumination of a fitness landscape.
    Hietpas RT; Jensen JD; Bolon DN
    Proc Natl Acad Sci U S A; 2011 May; 108(19):7896-901. PubMed ID: 21464309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive fitness maps of Hsp90 show widespread environmental dependence.
    Flynn JM; Rossouw A; Cote-Hammarlof P; Fragata I; Mavor D; Hollins C; Bank C; Bolon DN
    Elife; 2020 Mar; 9():. PubMed ID: 32129763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape.
    Kvitek DJ; Sherlock G
    PLoS Genet; 2011 Apr; 7(4):e1002056. PubMed ID: 21552329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting Adaptation in Protein-Coding Genes Using a Bayesian Site-Heterogeneous Mutation-Selection Codon Substitution Model.
    Rodrigue N; Lartillot N
    Mol Biol Evol; 2017 Jan; 34(1):204-214. PubMed ID: 27744408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pervasive contingency and entrenchment in a billion years of Hsp90 evolution.
    Starr TN; Flynn JM; Mishra P; Bolon DNA; Thornton JW
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4453-4458. PubMed ID: 29626131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synonymous mutations in representative yeast genes are mostly strongly non-neutral.
    Shen X; Song S; Li C; Zhang J
    Nature; 2022 Jun; 606(7915):725-731. PubMed ID: 35676473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational robustness changes during long-term adaptation in laboratory budding yeast populations.
    Johnson MS; Desai MM
    Elife; 2022 Jul; 11():. PubMed ID: 35880743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial evolution. Global epistasis makes adaptation predictable despite sequence-level stochasticity.
    Kryazhimskiy S; Rice DP; Jerison ER; Desai MM
    Science; 2014 Jun; 344(6191):1519-1522. PubMed ID: 24970088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape.
    Pokusaeva VO; Usmanova DR; Putintseva EV; Espinar L; Sarkisyan KS; Mishin AS; Bogatyreva NS; Ivankov DN; Akopyan AV; Avvakumov SY; Povolotskaya IS; Filion GJ; Carey LB; Kondrashov FA
    PLoS Genet; 2019 Apr; 15(4):e1008079. PubMed ID: 30969963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Valley-of-Death: reciprocal sign epistasis constrains adaptive trajectories in a constant, nutrient limiting environment.
    Chiotti KE; Kvitek DJ; Schmidt KH; Koniges G; Schwartz K; Donckels EA; Rosenzweig F; Sherlock G
    Genomics; 2014 Dec; 104(6 Pt A):431-7. PubMed ID: 25449178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local Fitness Landscapes Predict Yeast Evolutionary Dynamics in Directionally Changing Environments.
    Gorter FA; Aarts MGM; Zwaan BJ; de Visser JAGM
    Genetics; 2018 Jan; 208(1):307-322. PubMed ID: 29141909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Latent effects of Hsp90 mutants revealed at reduced expression levels.
    Jiang L; Mishra P; Hietpas RT; Zeldovich KB; Bolon DN
    PLoS Genet; 2013 Jun; 9(6):e1003600. PubMed ID: 23825969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fitness landscape of a tRNA gene.
    Li C; Qian W; Maclean CJ; Zhang J
    Science; 2016 May; 352(6287):837-40. PubMed ID: 27080104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Adaptive Potential of the Middle Domain of Yeast Hsp90.
    Cote-Hammarlof PA; Fragata I; Flynn J; Mavor D; Zeldovich KB; Bank C; Bolon DNA
    Mol Biol Evol; 2021 Jan; 38(2):368-379. PubMed ID: 32871012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential paralog divergence modulates genome evolution across yeast species.
    Sanchez MR; Miller AW; Liachko I; Sunshine AB; Lynch B; Huang M; Alcantara E; DeSevo CG; Pai DA; Tucker CM; Hoang ML; Dunham MJ
    PLoS Genet; 2017 Feb; 13(2):e1006585. PubMed ID: 28196070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.