These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3012766)

  • 1. Role of exogenous factors in alterations of red cell Na+-Li+ exchange and Na+-K+ cotransport in essential hypertension, primary hyperaldosteronism, and hypokalemia.
    Duhm J; Behr J
    Scand J Clin Lab Invest Suppl; 1986; 180():82-95. PubMed ID: 3012766
    [No Abstract]   [Full Text] [Related]  

  • 2. Red cell Na+ -K+ transport in various forms of human hypertension. Role of cardiovascular risk factors and plasma potassium.
    Behr J; Witzgall H; Lorenz R; Weber PC; Duhm J
    Klin Wochenschr; 1985; 63 Suppl 3():63-5. PubMed ID: 3999648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular sodium concentration and transport in red cells in essential hypertension, hyperthyroidism, pregnancy and hypokalemia.
    Gless KH; Sütterlin U; Schaz K; Schütz V; Hunstein W
    Clin Physiol Biochem; 1986; 4(3):199-209. PubMed ID: 3011343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [RBC Na(+)-Li+ countertransport and Na(+)-K+ cotransport in patients with essential hypertension].
    Zhang GS
    Zhonghua Xin Xue Guan Bing Za Zhi; 1993 Aug; 21(4):204-6, 252. PubMed ID: 8194429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Activity of the systems of transmembrane transport of Na+ (Na+-K+ ATPase, Na+-K+-Cl cotransport, Na+-Li+ countertransport and passive Na+ diffusion) in essential arterial hypertension].
    de la Sierra A; Coca A; Aguilera MT; Vives JL; Ingelmo M; Urbano-Márquez A
    Med Clin (Barc); 1988 Feb; 90(5):186-9. PubMed ID: 2832663
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes.
    Brugnara C; de Franceschi L
    J Cell Physiol; 1993 Feb; 154(2):271-80. PubMed ID: 8381125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane cationic fluxes in erythrocytes of diabetics and normal men.
    Lijnen P; Fenyvesi A
    Methods Find Exp Clin Pharmacol; 1994; 16(1):37-47. PubMed ID: 8164472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between erythrocyte cation transport systems and membrane and plasma lipids in healthy men.
    Lijnen P; Petrov V; Amery A
    Am J Med Sci; 1994 Feb; 307 Suppl 1():S146-9. PubMed ID: 8141155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship of red blood cell ion transport alterations and serum lipid abnormalities in Lyon genetically hypertensive rats.
    Zicha J; Dobesová Z; Kunes J; Vincent M
    Can J Physiol Pharmacol; 1997 Sep; 75(9):1123-8. PubMed ID: 9365824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 23Na-NMR study on cation transport systems in a patient with hypokalemic periodic paralysis.
    Cacciafesta M; Cammarella I; Ruggeri R; Germani MA; Soldo AR; Musca A
    Recenti Prog Med; 1993 May; 84(5):350-6. PubMed ID: 8390085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodological assessment of assays for intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of man.
    Lijnen P; Groeseneken D; Laermans M; Lommelen G; Piccart Y; Amery A
    Methods Find Exp Clin Pharmacol; 1984 Jun; 6(6):293-301. PubMed ID: 6087051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Red-cell sodium-lithium countertransport in patients with IgA nephrology and renal hypertension].
    Chen YD; Zheng FL; Wen LR
    Zhonghua Yi Xue Za Zhi; 1994 Apr; 74(4):214-7, 254. PubMed ID: 7922761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Transmembrane Na+ transport kinetics in arterial hypertension: relations with vascular risk parameters].
    Caballero Oliver A; Stiefel García-Junco P; García-Donas López MA; Villar Ortiz J; Carneado de la Fuente J
    Med Clin (Barc); 1995 Dec; 105(20):768-73. PubMed ID: 8558976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and epidemiological studies on electrolyte transport systems in hypertension.
    Williams RR; Hunt SC; Wu LL; Hasstedt SJ; Hopkins PN; Ash KO
    Clin Physiol Biochem; 1988; 6(3-4):136-49. PubMed ID: 3060295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characteristics of the Na+-K+-cotransport system in the erythrocyte membrane of patients with hypertension and symptomatic (renal) hypertension].
    Kavtaradze VG; Aleksidze NG; Kvirikadze NK; Nadiradze NI
    Biull Eksp Biol Med; 1986 Nov; 102(11):542-3. PubMed ID: 2430641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G-protein beta3-subunit gene variant, blood pressure and erythrocyte sodium/lithium countertransport in essential hypertension.
    Poch E; González-Núñez D; Compte M; De la Sierra A
    Br J Biomed Sci; 2002; 59(2):101-4. PubMed ID: 12113397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythrocyte Na+-K+ cotransport in elderly hypertensive subjects.
    Stessman J; Mekler J; Ben-Ishay D
    Isr J Med Sci; 1985 Mar; 21(3):314-6. PubMed ID: 3997493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Evidence of abnormalities in net sodium and potassium fluxes in erythrocytes of patients with essential hypertension].
    Garay RP; Meyer P
    C R Seances Acad Sci D; 1979 Jan; 288(4):453-5. PubMed ID: 109228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium transport across the red cell membrane and pathogenesis of essential hypertension: perspectives.
    Duhm J; Behr J
    Klin Wochenschr; 1987; 65 Suppl 8():69-75. PubMed ID: 3599805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythrocyte cation transport systems in insulin-dependent diabetics: correlation with prorenin and albuminuria.
    Lijnen P; Fenyvesi A; Bex M; Bouillon R; Amery A
    J Hum Hypertens; 1994 Apr; 8(4):251-6. PubMed ID: 8021905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.