These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 30127798)
1. High Performance of Photosynthesis and Osmotic Adjustment Are Associated With Salt Tolerance Ability in Rice Carrying Drought Tolerance QTL: Physiological and Co-expression Network Analysis. Nounjan N; Chansongkrow P; Charoensawan V; Siangliw JL; Toojinda T; Chadchawan S; Theerakulpisut P Front Plant Sci; 2018; 9():1135. PubMed ID: 30127798 [TBL] [Abstract][Full Text] [Related]
2. Salt-responsive mechanisms in chromosome segment substitution lines of rice (Oryza sativa L. cv. KDML105). Nounjan N; Siangliw JL; Toojinda T; Chadchawan S; Theerakulpisut P Plant Physiol Biochem; 2016 Jun; 103():96-105. PubMed ID: 26986930 [TBL] [Abstract][Full Text] [Related]
3. Combining Genome and Gene Co-expression Network Analyses for the Identification of Genes Potentially Regulating Salt Tolerance in Rice. Chutimanukul P; Saputro TB; Mahaprom P; Plaimas K; Comai L; Buaboocha T; Siangliw M; Toojinda T; Chadchawan S Front Plant Sci; 2021; 12():704549. PubMed ID: 34512689 [TBL] [Abstract][Full Text] [Related]
4. Photosynthesis Performance at Different Growth Stages, Growth, and Yield of Rice in Saline Fields. Santanoo S; Lontom W; Dongsansuk A; Vongcharoen K; Theerakulpisut P Plants (Basel); 2023 May; 12(9):. PubMed ID: 37176961 [TBL] [Abstract][Full Text] [Related]
5. Data in support of photosynthetic responses in a chromosome segment substitution line of 'Khao Dawk Mali 105' rice at seedling stage. Chutimanukul P; Kositsup B; Plaimas K; Buaboocha T; Siangliw M; Toojinda T; Comai L; Chadchawan S Data Brief; 2018 Dec; 21():307-312. PubMed ID: 30364694 [TBL] [Abstract][Full Text] [Related]
6. Assessing trait contribution and mapping novel QTL for salinity tolerance using the Bangladeshi rice landrace Capsule. Rahman MA; Thomson MJ; De Ocampo M; Egdane JA; Salam MA; Shah-E-Alam M; Ismail AM Rice (N Y); 2019 Aug; 12(1):63. PubMed ID: 31410650 [TBL] [Abstract][Full Text] [Related]
7. Comparison between the Transcriptomes of 'KDML105' Rice and a Salt-Tolerant Chromosome Segment Substitution Line. Khrueasan N; Chutimanukul P; Plaimas K; Buaboocha T; Siangliw M; Toojinda T; Comai L; Chadchawan S Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31554292 [TBL] [Abstract][Full Text] [Related]
8. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. Fan Y; Shabala S; Ma Y; Xu R; Zhou M BMC Genomics; 2015 Feb; 16(1):43. PubMed ID: 25651931 [TBL] [Abstract][Full Text] [Related]
9. Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance. Ibrahim W; Qiu CW; Zhang C; Cao F; Shuijin Z; Wu F Physiol Plant; 2019 Feb; 165(2):155-168. PubMed ID: 30006979 [TBL] [Abstract][Full Text] [Related]
10. Comparative proteomic analysis of chromosome segment substitution lines of Thai jasmine rice KDML105 under short-term salinity stress. Nguyen VQ; Sreewongchai T; Siangliw M; Roytrakul S; Yokthongwattana C Planta; 2022 Jun; 256(1):12. PubMed ID: 35710953 [TBL] [Abstract][Full Text] [Related]
11. Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Pattanagul W; Thitisaksakul M Indian J Exp Biol; 2008 Oct; 46(10):736-42. PubMed ID: 19024173 [TBL] [Abstract][Full Text] [Related]
12. Two-State Co-Expression Network Analysis to Identify Genes Related to Salt Tolerance in Thai rice. Suratanee A; Chokrathok C; Chutimanukul P; Khrueasan N; Buaboocha T; Chadchawan S; Plaimas K Genes (Basel); 2018 Nov; 9(12):. PubMed ID: 30501128 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic and Metabolomic Studies Disclose Key Metabolism Pathways Contributing to Well-maintained Photosynthesis under the Drought and the Consequent Drought-Tolerance in Rice. Ma X; Xia H; Liu Y; Wei H; Zheng X; Song C; Chen L; Liu H; Luo L Front Plant Sci; 2016; 7():1886. PubMed ID: 28066455 [TBL] [Abstract][Full Text] [Related]
14. An Li Y; Liu F; Li P; Wang T; Zheng C; Hou B Front Plant Sci; 2020; 11():560696. PubMed ID: 33224159 [TBL] [Abstract][Full Text] [Related]
15. Comparative physiological and metabolomic analyses reveal mechanisms of Aspergillus aculeatus-mediated abiotic stress tolerance in tall fescue. Xie Y; Sun X; Feng Q; Luo H; Wassie M; Amee M; Amombo E; Chen L Plant Physiol Biochem; 2019 Sep; 142():342-350. PubMed ID: 31382176 [TBL] [Abstract][Full Text] [Related]
16. Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Dugasa MT; Cao F; Ibrahim W; Wu F Physiol Plant; 2019 Feb; 165(2):134-143. PubMed ID: 29635753 [TBL] [Abstract][Full Text] [Related]
17. Genetic Dissection of Seedling Stage Salinity Tolerance in Rice Using Introgression Lines of a Salt Tolerant Landrace Nona Bokra. Puram VRR; Ontoy J; Linscombe S; Subudhi PK J Hered; 2017 Sep; 108(6):658-670. PubMed ID: 28821187 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Shankar R; Bhattacharjee A; Jain M Sci Rep; 2016 Mar; 6():23719. PubMed ID: 27029818 [TBL] [Abstract][Full Text] [Related]
19. Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes. Kurotani K; Yamanaka K; Toda Y; Ogawa D; Tanaka M; Kozawa H; Nakamura H; Hakata M; Ichikawa H; Hattori T; Takeda S Plant Cell Physiol; 2015 Oct; 56(10):1867-76. PubMed ID: 26329877 [TBL] [Abstract][Full Text] [Related]