BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30127856)

  • 1. Evolutionary methods for variable selection in the epidemiological modeling of cardiovascular diseases.
    Brester C; Kauhanen J; Tuomainen TP; Voutilainen S; Rönkkö M; Ronkainen K; Semenkin E; Kolehmainen M
    BioData Min; 2018; 11():18. PubMed ID: 30127856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidemiological predictive modeling: lessons learned from the Kuopio ischemic heart disease risk factor study.
    Brester C; Voutilainen A; Tuomainen TP; Kauhanen J; Kolehmainen M
    Ann Epidemiol; 2022 Jun; 70():1-8. PubMed ID: 35354081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology.
    Fox EW; Hill RA; Leibowitz SG; Olsen AR; Thornbrugh DJ; Weber MH
    Environ Monit Assess; 2017 Jul; 189(7):316. PubMed ID: 28589457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A variable selection method based on mutual information and variance inflation factor.
    Cheng J; Sun J; Yao K; Xu M; Cao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120652. PubMed ID: 34896682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The value of Bayesian predictive projection for variable selection: an example of selecting lifestyle predictors of young adult well-being.
    Bartonicek A; Wickham SR; Pat N; Conner TS
    BMC Public Health; 2021 Apr; 21(1):695. PubMed ID: 33836714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive new approaches for variable selection using ordered predictors selection.
    Roque JV; Cardoso W; Peternelli LA; Teófilo RF
    Anal Chim Acta; 2019 Oct; 1075():57-70. PubMed ID: 31196424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-Analysis of Predictive Modeling with an Epidemiological Example.
    Brester C; Voutilainen A; Tuomainen TP; Kauhanen J; Kolehmainen M
    Healthcare (Basel); 2021 Jun; 9(7):. PubMed ID: 34202622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the performance of machine learning methods and variable selection methods for predicting difficult-to-measure traits in Holstein dairy cattle using milk infrared spectral data.
    Mota LFM; Pegolo S; Baba T; Peñagaricano F; Morota G; Bittante G; Cecchinato A
    J Dairy Sci; 2021 Jul; 104(7):8107-8121. PubMed ID: 33865589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivariate modeling of complications with data driven variable selection: guarding against overfitting and effects of data set size.
    van der Schaaf A; Xu CJ; van Luijk P; Van't Veld AA; Langendijk JA; Schilstra C
    Radiother Oncol; 2012 Oct; 105(1):115-21. PubMed ID: 22264894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random forests for feature selection in QSPR Models - an application for predicting standard enthalpy of formation of hydrocarbons.
    Teixeira AL; Leal JP; Falcao AO
    J Cheminform; 2013 Feb; 5(1):9. PubMed ID: 23399299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of variable selection methods for clinical predictive modeling.
    Sanchez-Pinto LN; Venable LR; Fahrenbach J; Churpek MM
    Int J Med Inform; 2018 Aug; 116():10-17. PubMed ID: 29887230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recursive Random Forests Enable Better Predictive Performance and Model Interpretation than Variable Selection by LASSO.
    Zhu XW; Xin YJ; Ge HL
    J Chem Inf Model; 2015 Apr; 55(4):736-46. PubMed ID: 25746224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the graft survival for heart-lung transplantation patients: an integrated data mining methodology.
    Oztekin A; Delen D; Kong ZJ
    Int J Med Inform; 2009 Dec; 78(12):e84-96. PubMed ID: 19497782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining variable selection methods for the predictive performance of regression models and the proportion of selected variables and selected random variables.
    Kaneko H
    Heliyon; 2021 Jun; 7(6):e07356. PubMed ID: 34195450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative efficacy of three Bayesian variable selection methods in the context of weight loss in obese women.
    Pesenti N; Quatto P; Colicino E; Cancello R; Scacchi M; Zambon A
    Front Nutr; 2023; 10():1203925. PubMed ID: 37533570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CORRELATION PURSUIT: FORWARD STEPWISE VARIABLE SELECTION FOR INDEX MODELS.
    Zhong W; Zhang T; Zhu Y; Liu JS
    J R Stat Soc Series B Stat Methodol; 2012 Nov; 74(5):849-870. PubMed ID: 23243388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of subset selection methods in linear regression in the context of health-related quality of life and substance abuse in Russia.
    Morozova O; Levina O; Uusküla A; Heimer R
    BMC Med Res Methodol; 2015 Aug; 15():71. PubMed ID: 26319135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A descriptive review of variable selection methods in four epidemiologic journals: there is still room for improvement.
    Talbot D; Massamba VK
    Eur J Epidemiol; 2019 Aug; 34(8):725-730. PubMed ID: 31161279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.