These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30128126)

  • 21. Phylogenetic analysis of Theileria sp. from sika deer, Cervus nippon, in Japan.
    Inokuma H; Tsuji M; Kim SJ; Fujimoto T; Nagata M; Hosoi E; Arai S; Ishihara C; Okuda M
    Vet Parasitol; 2004 Apr; 120(4):339-45. PubMed ID: 15063944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Do Feed Plants Provide Sufficient Sodium, Calcium and Magnesium to Sika Deer in Japan? An Analysis Using Global Plant Trait Data.
    Mori T; Iwagami S; Yamagawa H; Suzuki KK
    Animals (Basel); 2023 Mar; 13(6):. PubMed ID: 36978585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by high-throughput sequencing.
    Guan Y; Yang H; Han S; Feng L; Wang T; Ge J
    AMB Express; 2017 Nov; 7(1):212. PubMed ID: 29170893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular differentiation of five Sarcocystis species in sika deer (Cervus nippon centralis) in Japan based on mitochondrial cytochrome c oxidase subunit I gene (cox1) sequences.
    Abe N; Matsuo K; Moribe J; Takashima Y; Baba T; Gjerde B
    Parasitol Res; 2019 Jun; 118(6):1975-1979. PubMed ID: 31001675
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Population Structure, Admixture, and Migration Patterns of Japanese Sika Deer (
    Eva SN; Yamazaki Y
    Zoolog Sci; 2019 Apr; 36(2):128-135. PubMed ID: 31120647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular authentication of sika deer (
    Hou F; Gao J
    Mitochondrial DNA B Resour; 2019 Jul; 4(2):2231-2233. PubMed ID: 33365488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterogeneous development of methanogens and the correlation with bacteria in the rumen and cecum of sika deer (Cervus nippon) during early life suggest different ecology relevance.
    Li Z; Wang X; Zhang T; Si H; Xu C; Wright AG; Li G
    BMC Microbiol; 2019 Jun; 19(1):129. PubMed ID: 31185894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of Sika deer on vegetation in Japan: setting management priorities on a national scale.
    Ohashi H; Yoshikawa M; Oono K; Tanaka N; Hatase Y; Murakami Y
    Environ Manage; 2014 Sep; 54(3):631-40. PubMed ID: 25037481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dangers of predicting bird species distributions in response to land-cover changes.
    Vallecillo S; Brotons L; Thuiller W
    Ecol Appl; 2009 Mar; 19(2):538-49. PubMed ID: 19323209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tropical amphibians in shifting thermal landscapes under land-use and climate change.
    Nowakowski AJ; Watling JI; Whitfield SM; Todd BD; Kurz DJ; Donnelly MA
    Conserv Biol; 2017 Feb; 31(1):96-105. PubMed ID: 27254115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An examination of the origin and evolution of additional tandem repeats in the mitochondrial DNA control region of Japanese sika deer (Cervus Nippon).
    Ba H; Wu L; Liu Z; Li C
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(1):276-81. PubMed ID: 24621225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The establishment of a hybrid zone between red and sika deer (genus Cervus).
    Abernethy K
    Mol Ecol; 1994 Dec; 3(6):551-62. PubMed ID: 7834107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling the impact of sea level rise on endangered deer habitat.
    Kim J; Popescu SC; Lopez RR; Wu XB; Silvy NJ
    J Environ Manage; 2024 Jun; 360():121010. PubMed ID: 38749135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classification and phylogeny of sika deer (Cervus nippon) subspecies based on the mitochondrial control region DNA sequence using an extended sample set.
    Ba H; Yang F; Xing X; Li C
    Mitochondrial DNA; 2015 Jun; 26(3):373-9. PubMed ID: 24063645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of dietary forage-to-concentrate ratio on nutrient digestibility and enteric methane production in growing goats (
    Na Y; Li DH; Lee SR
    Asian-Australas J Anim Sci; 2017 Jul; 30(7):967-972. PubMed ID: 28335097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Human Harvesting, Residences, and Forage Abundance on Deer Spatial Distribution.
    Takada H; Nakamura K
    Animals (Basel); 2024 Jun; 14(13):. PubMed ID: 38998036
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic diversity and population structure of a Sichuan sika deer (Cervus sichuanicus) population in Tiebu Nature Reserve based on microsatellite variation.
    He Y; Wang ZH; Wang XM
    Dongwuxue Yanjiu; 2014 Nov; 35(6):528-36. PubMed ID: 25465089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.
    Brown KA; Parks KE; Bethell CA; Johnson SE; Mulligan M
    PLoS One; 2015; 10(4):e0122721. PubMed ID: 25856241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mountain landscapes offer few opportunities for high-elevation tree species migration.
    Bell DM; Bradford JB; Lauenroth WK
    Glob Chang Biol; 2014 May; 20(5):1441-51. PubMed ID: 24353188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicted declines in suitable habitat for greater one-horned rhinoceros (
    Pant G; Maraseni T; Apan A; Allen BL
    Ecol Evol; 2021 Dec; 11(24):18288-18304. PubMed ID: 35003673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.