BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30128329)

  • 1. Modeling visual search behavior of breast radiologists using a deep convolution neural network.
    Mall S; Brennan PC; Mello-Thoms C
    J Med Imaging (Bellingham); 2018 Jul; 5(3):035502. PubMed ID: 30128329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can a Machine Learn from Radiologists' Visual Search Behaviour and Their Interpretation of Mammograms-a Deep-Learning Study.
    Mall S; Brennan PC; Mello-Thoms C
    J Digit Imaging; 2019 Oct; 32(5):746-760. PubMed ID: 31410677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fixated and Not Fixated Regions of Mammograms: A Higher-Order Statistical Analysis of Visual Search Behavior.
    Mall S; Brennan P; Mello-Thoms C
    Acad Radiol; 2017 Apr; 24(4):442-455. PubMed ID: 28139426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual search in breast imaging.
    Gandomkar Z; Mello-Thoms C
    Br J Radiol; 2019 Oct; 92(1102):20190057. PubMed ID: 31287719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iCAP: An Individualized Model Combining Gaze Parameters and Image-Based Features to Predict Radiologists' Decisions While Reading Mammograms.
    Gandomkar Z; Tay K; Ryder W; Brennan PC; Mello-Thoms C
    IEEE Trans Med Imaging; 2017 May; 36(5):1066-1075. PubMed ID: 28055858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recurrence quantification analysis of radiologists' scanpaths when interpreting mammograms.
    Gandomkar Z; Tay K; Brennan PC; Mello-Thoms C
    Med Phys; 2018 Jul; 45(7):3052-3062. PubMed ID: 29694675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective.
    Mohamed AA; Luo Y; Peng H; Jankowitz RC; Wu S
    J Digit Imaging; 2018 Aug; 31(4):387-392. PubMed ID: 28932980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the link between radiologists' gaze, diagnostic decision, and image content.
    Tourassi G; Voisin S; Paquit V; Krupinski E
    J Am Med Inform Assoc; 2013; 20(6):1067-75. PubMed ID: 23788627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A collaborative computer aided diagnosis (C-CAD) system with eye-tracking, sparse attentional model, and deep learning.
    Khosravan N; Celik H; Turkbey B; Jones EC; Wood B; Bagci U
    Med Image Anal; 2019 Jan; 51():101-115. PubMed ID: 30399507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of factors influencing radiologists' visual search behaviour.
    Ganesan A; Alakhras M; Brennan PC; Mello-Thoms C
    J Med Imaging Radiat Oncol; 2018 Dec; 62(6):747-757. PubMed ID: 30198628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision.
    Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y
    Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What do experts look at and what do experts find when reading mammograms?
    Wolfe JM; Wu CC; Li J; Suresh SB
    J Med Imaging (Bellingham); 2021 Jul; 8(4):045501. PubMed ID: 34277890
    [No Abstract]   [Full Text] [Related]  

  • 13. Head-mounted versus remote eye tracking of radiologists searching for breast cancer: a comparison.
    Mello-Thoms C; Britton C; Abrams G; Hakim C; Shah R; Hardesty L; Maitz G; Gur D
    Acad Radiol; 2006 Feb; 13(2):203-9. PubMed ID: 16428056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How mammographic breast density affects radiologists' visual search patterns.
    Al Mousa DS; Brennan PC; Ryan EA; Lee WB; Tan J; Mello-Thoms C
    Acad Radiol; 2014 Nov; 21(11):1386-93. PubMed ID: 25172414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can eye-tracking metrics be used to better pair radiologists in a mammogram reading task?
    Gandomkar Z; Tay K; Brennan PC; Kozuch E; Mello-Thoms C
    Med Phys; 2018 Nov; 45(11):4844-4856. PubMed ID: 30168153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: a case-case study.
    Hinton B; Ma L; Mahmoudzadeh AP; Malkov S; Fan B; Greenwood H; Joe B; Lee V; Kerlikowske K; Shepherd J
    Cancer Imaging; 2019 Jun; 19(1):41. PubMed ID: 31228956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAMS: Remote and automatic mammogram screening.
    Cogan T; Cogan M; Tamil L
    Comput Biol Med; 2019 Apr; 107():18-29. PubMed ID: 30771549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using breast radiographers' reports as a second opinion for radiologists' readings of microcalcifications in digital mammography.
    Tanaka R; Takamori M; Uchiyama Y; Nishikawa RM; Shiraishi J
    Br J Radiol; 2015 Mar; 88(1047):20140565. PubMed ID: 25536443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation and initial experience with an interactive eye-tracking system for measuring radiologists' visual search in diagnostic tasks using volumetric CT images.
    Gong H; Hsieh SS; Holmes DR; Cook DA; Inoue A; Bartlett DJ; Baffour F; Takahashi H; Leng S; Yu L; Fletcher JG; McCollough CH
    Proc SPIE Int Soc Opt Eng; 2022; 12031():. PubMed ID: 35721454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perception of breast cancer: eye-position analysis of mammogram interpretation.
    Mello-Thoms C
    Acad Radiol; 2003 Jan; 10(1):4-12. PubMed ID: 12529023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.