BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30128850)

  • 1. How many squat-stand manoeuvres to assess dynamic cerebral autoregulation?
    Barnes SC; Ball N; Haunton VJ; Robinson TG; Panerai RB
    Eur J Appl Physiol; 2018 Nov; 118(11):2377-2384. PubMed ID: 30128850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random squat/stand maneuvers: a novel approach for assessment of dynamic cerebral autoregulation?
    Barnes SC; Ball N; Panerai RB; Robinson TG; Haunton VJ
    J Appl Physiol (1985); 2017 Sep; 123(3):558-566. PubMed ID: 28642293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does depth of squat-stand maneuver affect estimates of dynamic cerebral autoregulation?
    Batterham AP; Panerai RB; Robinson TG; Haunton VJ
    Physiol Rep; 2020 Aug; 8(16):e14549. PubMed ID: 32812372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional sensitivity of dynamic cerebral autoregulation in squat-stand maneuvers.
    Panerai RB; Barnes SC; Nath M; Ball N; Robinson TG; Haunton VJ
    Am J Physiol Regul Integr Comp Physiol; 2018 Oct; 315(4):R730-R740. PubMed ID: 29975567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremes of cerebral blood flow during hypercapnic squat-stand maneuvers.
    Barnes SC; Haunton VJ; Beishon L; Llwyd O; Robinson TG; Panerai RB
    Physiol Rep; 2021 Oct; 9(19):e15021. PubMed ID: 34617685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cerebrocardiovascular response to periodic squat-stand maneuvers in healthy subjects: a time-domain analysis.
    Barnes SC; Ball N; Haunton VJ; Robinson TG; Panerai RB
    Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1240-H1248. PubMed ID: 28887332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of dynamic cerebral autoregulation and cerebrovascular CO2 reactivity in ageing by measurements of cerebral blood flow and cortical oxygenation.
    Oudegeest-Sander MH; van Beek AH; Abbink K; Olde Rikkert MG; Hopman MT; Claassen JA
    Exp Physiol; 2014 Mar; 99(3):586-98. PubMed ID: 24363382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Systolic and Diastolic Regulation of the Cerebral Pressure-Flow Relationship During Squat-Stand Manoeuvres.
    Smirl JD; Wright AD; Ainslie PN; Tzeng YC; van Donkelaar P
    Acta Neurochir Suppl; 2018; 126():263-268. PubMed ID: 29492572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic cerebral autoregulation during repeated squat-stand maneuvers.
    Claassen JA; Levine BD; Zhang R
    J Appl Physiol (1985); 2009 Jan; 106(1):153-60. PubMed ID: 18974368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directional sensitivity of dynamic cerebral autoregulation during spontaneous fluctuations in arterial blood pressure at rest.
    Panerai RB; Barnes SC; Batterham AP; Robinson TG; Haunton VJ
    J Cereb Blood Flow Metab; 2023 Apr; 43(4):552-564. PubMed ID: 36420777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of dynamic cerebral autoregulation measurement using spontaneous fluctuations in blood pressure.
    Brodie FG; Atkins ER; Robinson TG; Panerai RB
    Clin Sci (Lond); 2009 Mar; 116(6):513-20. PubMed ID: 18939945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance exercise acutely elevates dynamic cerebral autoregulation gain.
    Smail OJ; Clarke DJ; Al-Alem Q; Wallis W; Barker AR; Smirl JD; Bond B
    Physiol Rep; 2023 Apr; 11(8):e15676. PubMed ID: 37100594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of cerebral blood flow velocity change during squat-stand maneuvers.
    Panerai RB; Batterham A; Robinson TG; Haunton VJ
    Am J Physiol Regul Integr Comp Physiol; 2021 Apr; 320(4):R452-R466. PubMed ID: 33533312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements.
    Panerai RB; Sammons EL; Smith SM; Rathbone WE; Bentley S; Potter JF; Samani NJ
    Physiol Meas; 2008 Apr; 29(4):497-513. PubMed ID: 18401070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships.
    Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN
    J Appl Physiol (1985); 2015 Sep; 119(5):487-501. PubMed ID: 26183476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased blood pressure variability upon standing up improves reproducibility of cerebral autoregulation indices.
    Mahdi A; Nikolic D; Birch AA; Olufsen MS; Panerai RB; Simpson DM; Payne SJ
    Med Eng Phys; 2017 Sep; 47():151-158. PubMed ID: 28694108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term heart transplant recipients: heart rate-related effects on augmented transfer function coherence during repeated squat-stand maneuvers in males.
    Burma JS; Kennedy CM; Penner LC; Miutz LN; Galea OA; Ainslie PN; Smirl JD
    Am J Physiol Regul Integr Comp Physiol; 2021 Dec; 321(6):R925-R937. PubMed ID: 34730005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The upper frequency limit of dynamic cerebral autoregulation.
    Panerai RB; Robinson TG; Minhas JS
    J Physiol; 2019 Dec; 597(24):5821-5833. PubMed ID: 31671473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased inspiratory resistance affects the dynamic relationship between blood pressure changes and subarachnoid space width oscillations.
    Wszedybyl-Winklewska M; Wolf J; Swierblewska E; Kunicka K; Mazur K; Gruszecki M; Winklewski PJ; Frydrychowski AF; Bieniaszewski L; Narkiewicz K
    PLoS One; 2017; 12(6):e0179503. PubMed ID: 28654638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arterial Pressure, Heart Rate, and Cerebral Hemodynamics Across the Adult Life Span.
    Xing CY; Tarumi T; Meijers RL; Turner M; Repshas J; Xiong L; Ding K; Vongpatanasin W; Yuan LJ; Zhang R
    Hypertension; 2017 Apr; 69(4):712-720. PubMed ID: 28193707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.